Chemiefabrik im Mikro-Maßstab
Mehrstufige Synthese im Durchfluss
Um das Potenzial der Mikroreaktionstechnik voll auszuschöpfen, ist es unabdingbar, auch die notwendigen Trennschritte zu integrieren. Das Team um Klavs F. Jensen hat kürzlich eine effiziente mikrofluidische Trenntechnik entwickelt und dieses Prinzip nun in ein kontinuierlich arbeitendes dreistufiges Reaktionssystem integriert. Mikrotrennungen müssen nach anderen Prinzipien betrieben werden als Trennungen im üblichen Maßstab, denn in mikrofluidischen Systemen dominieren Kräfte der Oberflächenspannung gegenüber der Schwerkraft.
Und so funktioniert die Mikro-flüssig-flüssig-Trennung: Eine poröse Trenn-Membran aus einem Fluorpolymer wird von der organische Phase benetzt, diese kann durch die feinen Poren "durchkriechen". Die abzutrennende wässrige Phase kann die von der organischen Phase bereits benetzten Poren selbst nicht mehr benetzen, da die beiden Flüssigkeiten nicht mischbar sind - und kann daher die Poren nicht passieren. Die zweite Trennung, eine Gas-flüssig-Trennung, basiert auf demselben Prinzip: Hier benetzt die Flüssigkeit, die das Zwischenprodukt enthält, die Membran und durchquert die Poren. Für den während der Reaktion freigewordenen Stickstoff wirkt die benetzte Membran dagegen als Sperre.
Als Modellreaktion wählten die Forscher die Synthese von Carbamaten, Stoffen, die u.a. als Pflanzenschutzmittel eingesetzt werden und wichtige Bausteine und Hilfsstoffe bei chemischen Synthesen sind. Bei ihrer dreistufigen Synthese ("Curtius-Umlagerung") treten Zwischenprodukte (Azide, Isocyanate) auf, die Gefahrenpotenzial bergen, da Vertreter dieser Substanzklassen explosiv oder gesundheitsgefährdend sind. Vorteil des Mikroreaktionssystems: Diese Zwischenprodukte werden in situ gebildet und gleich wieder verbraucht, müssen also weder isoliert noch gelagert werden.
Wird der Produktstrom nach der zweiten Trennstufe aufgeteilt, in mehrere Mikroreaktoren weitergeleitet und mit unterschiedlichen Reaktionspartnern versetzt, können verschiedene, aber verwandte Carbamate parallel synthetisiert werden.
Originalveröffentlichung: Klavs F. Jensen et al.; "Multistep Continuous-Flow Microchemical Synthesis involving Multiple Reactions and Separations"; Angewandte Chemie 2007, 119, No. 30, 5806-5810.
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.