Karlsruher Wissenschaftler nutzen Ionische Flüssigkeiten und Mikrowellen zur Herstellung von Nanopartikeln

09.11.2007

"Man nehme Zinn- und Indiumchlorid, gebe es in einen Topf mit Ionischer Flüssigkeit und erhitze das Ganze in der Mikrowelle." Was wie die jüngste Kreation der Chemieküche klingt, beschreibt ein neues Verfahren, um elektrisch leitende Nanopartikel aus Indium-Zinn-Oxid (ITO: Indium Tin Oxide) schnell und einfach zu synthetisieren. Ohne aufwändige Zwischenschritte produziert Professor Claus Feldmann vom Karlsruher Institut für Technologie (KIT) damit gleichförmige und regelmäßige, zehn bis fünfzehn Nanometer große Kristalle, die nicht verklumpen und sich leicht in wässrigen Medien dispergieren lassen. Diese Nanokristalle können mit konventionellen Techniken als unsichtbare Elektroden auf transparente, flexible oder hitzeempfindliche Materialien aufgedruckt werden. Mit der inzwischen patentierten "Ein-Topf-Mikrowellen-Synthese" in Ionischen Flüssigkeiten stellt Feldmann aber auch andere nanoskalige Partikel wie etwa lumineszierende Materialien her, die im sichtbaren Licht transparent sind, unter UV-Licht aber farbig leuchten. Nanopartikel, die sich als transparente, nur wenige Nanometer dicke stromleitende oder leuchtende Schichten auftragen lassen, werden in Leuchtdioden und Solarzellen, zur Sicherheitsmarkierung oder für dekorative Zwecke eingesetzt. Um besonders gleichmäßige Kristalle ohne Defekte in ihrer Gitterstruktur zu gewinnen, sind üblicherweise hohe Temperaturen (bis 600 °C) erforderlich. Zusätzlich beigemischte Substanzen, die die neu gebildeten Partikel wie eine Nussschale umschließen, können verhindern, dass diese sich zu größeren Aggregaten zusammenballen. "Allerdings ist die Synthese aufwändig und einige Zusatzstoffe sind toxisch. Nanopartikel für therapeutische oder diagnostische Anwendungen in der Medizin kann man damit nur schwer synthetisieren", erläutert Feldmann.

DFG-Centrum für Funktionelle Nanostrukturen (CFN)

Die Kleinsten im Netz - Papierfasern mit Leuchtstoff-Nanopartikeln.

Um diese Nachteile zu umgehen, nutzt der Chemiker am DFG-Centrum für Funktionelle Nanostrukturen des KIT sogenannte Ionische Flüssigkeiten als Lösungsmittel. Sie bestehen ausschließlich aus großen Kationen und Anionen, sind also ein wasserfreies, nicht-kristallines Salz. Sie sind bei Temperaturen zwischen -50 und +400 Grad Celsius flüssig und dabei chemisch stabil. Da sie kaum mit den gelösten Partikeln in Wechselwirkung treten, lassen sie sich bei der Aufreinigung der Produkte leicht entfernen. Diese Eigenschaft hat allerdings einen Nachteil: Neu gebildete Partikel werden nicht von einem Mantel aus Lösungsmittel-Molekülen umhüllt, der den Kontakt untereinander verhindert. Erhitzt man das Gemisch auf konventionelle Art, bilden sich daher wegen des Temperaturgefälles innerhalb der Lösung größere Komplexe, die sich anschließend nicht mehr trennen lassen. Hier kommt die "schnelle Welle" ins Spiel: Im Mikrowellenofen wird die Probe in Sekunden gleichmäßig im ganzen Gefäß erhitzt und so die Aggregation der Partikel verhindert.

"Die ersten Versuche haben wir tatsächlich mit einem einfachen Hauhaltsgerät durchgeführt", erinnert sich Feldmann. Inzwischen benutzt er aber eine spezielle Labor-Mikrowelle, in der er die Reaktionslösung rühren und ihre Temperatur messen kann. Bis zur industriellen Nutzung seines Syntheseverfahrens ist es allerdings noch ein langer Weg. Denn noch sind Ionische Flüssigkeiten, die bisher kaum technisch angewendet werden, relativ teuer. Die Preise würden aber mit steigender Nachfrage sinken, ist sich Feldmann sicher. Außerdem könnten die flüssigen Salze nach der Synthese wieder verwendet werden. Chemieunternehmen wie die Evonik Degussa GmbH setzen bereits auf die neue Methode und kooperieren eng mit dem Karlsruher Chemiker, dessen Arbeiten zudem von den Ländern Baden-Württemberg und Nordrhein-Westfalen, der Europäischen Union und der Deutschen Forschungsgemeinschaft unterstützt werden.

Originalveröffentlichung: G. Bühler, D. Thölmann, C. Feldmann; "One-pot Synthesis of Highly Conductive ITO Nanocrystals." , Adv. Mater. 2007, 19, 2224.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren