Einblicke in lebende Zellen in ungekannter Schärfe: "Nanolive"-Projekt entwickelt STED-Mikroskopie weiter

17.03.2008

Ein Forschungsverbund aus Wirtschaft und Wissenschaft will die von Professor Stefan Hell erfundene "Lichtmikroskopie in ungekannter Schärfe" in eine biomedizinische Routinemethode überführen. Die Anwendungsmöglichkeiten der ultrascharfen Fluoreszenzmikroskopie lebender Zellen sind enorm: Sie soll zu einem besseren Verständnis der biologischen Prozesse in lebenden Zellen führen und damit neue Wege zur Bekämpfung von Krankheiten eröffnen.

Hell hat Wege gefunden, um diese Auflösungsgrenze von ca. 200 nm fundamental zu überwinden. Eine technische Umsetzung der Erkenntnisse ist die STED-Mikroskopie (Stimulated Emission Depletion), die Auflösungen von unter 50 nm ermöglicht. Diese Technologie hat Hell gemeinsam mit Leica Microsystems bis zur Marktreife entwickelt. Sie erlaubt allerdings bisher nur die Untersuchung fixierter, d.h. toter Zellen.

Nun soll die Methode auf die Untersuchung lebender Zellen übertragen werden. Um dieses ehrgeizige Ziel zu erreichen, haben das Göttinger Max-Planck-Institut für Biophysikalische Chemie und Leica Microsystems das Verbundforschungsprojekt "Nanolive" ins Leben gerufen. Weitere Projektpartner sind die Atto-Tec GmbH (Siegen), ein Hersteller von Fluoreszenzmarkern, und die STED-Nachwuchsgruppe am European Neuroscience Institute Göttingen (ENI-G) unter Leitung von Dr. Rizzoli.

Der Verbund will in den kommenden drei Jahren ein Funktionsmuster eines Lebendzell-STED-Mikroskops realisieren. Dazu werden instrumentelle Neuerungen, aber auch neue Fluoreszenzfarbstoffe und fluoreszierende Proteine als langlebige und hoch spezifische Marker erforscht. Die Technologie soll nicht nur hoch aufgelöste Einzelbilder, sondern auch schnelle Bildsequenzen aus lebenden Zellen liefern. So könnte man dynamische Prozesse innerhalb oder zwischen einzelnen Zellen abbilden und damit neue Erkenntnisse über Signalübertragung, Zellkommunikation, Transportvorgänge und Zelldifferenzierungen gewinnen. Dies wollen die Wissenschaftler des ENI bereits im Projektverlauf am Beispiel der Signalübertragung durch Nervenzellen aufzeigen. Die hohe wissenschaftliche Relevanz lässt sich auch in wirtschaftlicher Dimension erfassen. So wird das Marktpotenzial für höchstauflösende Mikroskope auf ca. 70 Millionen US-Dollar geschätzt. Darüber hinaus gilt STED als eine Schlüsseltechnologie, die ganz neue Anwendungsfelder in der Biotechnologie und Medizin eröffnen wird.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DM8000 M & DM12000 M

DM8000 M & DM12000 M von Leica

Mehr sehen, schneller erkennen

Inspektionssysteme für höchsten Durchsatz

Optische Inspektionssysteme
alpha300 R

alpha300 R von WITec

3D Raman Mikroskope mit unerreichter Geschwindigkeit, Sensitivität und Auflösung

Jedes chemische Detail der Probe wird sichtbar

Raman-Mikroskope
DM6 M

DM6 M von Leica

Aufrechtes Materialmikroskop

Alles eingestellt und gespeichert

Mikroskope
LUMOS II

LUMOS II von Bruker

FT-IR-Mikroskopie auf der Überholspur – das LUMOS II

Ein Infrarot-Mikroskop für alle

FT-IR-Mikroskope
ZEISS ZEN core

ZEISS ZEN core von Carl Zeiss

ZEISS ZEN core - Software-Suite für vernetzte Mikroskopie vom Analyselabor bis zur Produktion

Die umfangreiche Lösung für Bildgebung, Segmentierung und Datenanalyse in vernetzten Materiallaboren

Mikroskopiesoftware
HYPERION II

HYPERION II von Bruker

FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung

Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle

FT-IR-Mikroskope
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller