Neues Konzept zur Herstellung von magnetischen Datenspeichern
FZD
In den vergangenen Jahrzehnten wurden ausschließlich die Materialien optimiert, um immer höhere Speicherdichten bei Computer-Festplatten zu ermöglichen. Die Speicherung selbst funktioniert mit Magnetismus. Die einzelnen Körner, aus denen das magnetische Material besteht, wurden also immer kleiner. Gleichzeitig wurde die Speicherfestigkeit ("magnetische Anisotropie") immer größer. Die kleinste Speichereinheit (1 Bit) wird typischerweise gleichzeitig in ca. 100 Körner geschrieben, von denen jedes etwa 10 Nanometer groß ist. Die Körner sitzen nebeneinander in magnetischen Schichten und sind so dick wie die jeweilige Schicht. Da die Abmessungen der Körner nicht weiter verkleinert werden können, ohne die Speichereigenschaften zu verlieren, müssten zukünftig immer weniger Körner zur Speicherung einer einzelnen Information verwendet werden. Das führt unweigerlich zu einer größeren Fehlerwahrscheinlichkeit beim Auslesen der Information. Eine Möglichkeit, dies zu umgehen, besteht darin, nur noch eine einzige magnetische Insel als Speichereinheit zu verwenden, die dann größer sein darf, allerdings präzise positioniert sein muss.
Solche magnetischen Inseln können zum Beispiel mit Hilfe von gängigen Nano-Strukturierungstechniken aus einer durchgängigen magnetischen Materialoberfläche herausgearbeitet werden. Diese Vorgehensweise ist bisher jedoch mit einem großen Nachteil verbunden: die so hergestellten Nano-Inseln sitzen auf der Materialoberfläche und machen diese rau, was sich nachteilig auf den ca. 20 Nanometer über der Festplatte fliegenden Schreib-/Lesekopf auswirkt. Insofern sind Konzepte gefragt, die einerseits eine magnetische Strukturierung deutlich unterhalb von 100 Nanometern erlauben, aber gleichzeitig die Oberfläche unverändert eben belassen.
Physikern vom Forschungszentrum Dresden-Rossendorf (FZD) gelang es nun in Zusammenarbeit v. a. mit Kollegen aus Spanien sowie von weiteren Einrichtungen wie dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW), superflache Nano-Magnete in Legierungen aus Eisen und Aluminium herzustellen, indem sie die Materialoberfläche mit Fremdatomen behandelten. Sie beschossen mit einem sehr fein gebündelten Ionenstrahl die Oberfläche so, dass nur die bestrahlten Bereiche des Materials ferromagnetisch wurden; die unbestrahlten Bereiche blieben unmagnetisch. Der Ionenstrahl kann auf eine Fläche von wenigen Nanometern gebündelt werden, was die eingebetteten Nano-Magnete mit einer Größe von deutlich unter 100 Nanometern überhaupt erst möglich macht. Gleichzeitig ist die zum Einsatz kommende Ionendosis gering. Damit tritt kein deutlicher Materialabtrag auf und die Oberfläche des Materials bleibt unverändert eben. Die Dresdner Nano-Magnete erfüllen alle Anforderungen an ein neues Konzept zur magnetischen Datenspeicherung. Um eine technologische Umsetzung dieses Konzepts verwirklichen zu können, arbeiten die Forscher nun an einer Verbesserung der Speicherfestigkeit dieses Materials.
Originalveröffentlichung: Enric Menéndez et al.; "Direct Magnetic Patterning due to the Generation of Ferromagnetism by Selective Ion Irradiation of Paramagnetic FeAl Alloys"; Small, 2009
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.