RUB-Chemiker entwickeln neues Herstellungsverfahren für MOFs

Neue Funktionsmaterialien durch intelligente Oberflächen

07.05.2009 - Deutschland

Ob Wasserstoff für Brennstoffzellen oder Medikamente - in molekularen Regalsystemen ("MOFs" für engl. Metal-Organic Frameworks) lässt sich allerhand unterbringen. Auch Metallpartikel für die Katalyse - wenn da nicht ein Haken wäre: Macht man die Fächer des Regals zu groß, entsteht darin bei der Herstellung automatisch ein zweites Regalsystem. Durch diesen "Wildwuchs" wird die Größe der Fächer deutlich verringert. Bochumer Chemiker um Prof. Dr. Christof Wöll und Prof. Dr. Roland A. Fischer haben dieses gravierende Problem jetzt durch die Entwicklung einer alternativen Herstellungstechnik gelöst.

Sie lassen nicht das ganze Molekularregal auf einmal entstehen, sondern bauen es Schicht für Schicht auf einer intelligenten organischen Oberfläche auf. So lassen sich auch Fächer bauen, die groß genug für die Metallpartikel sind.

Fächer sind für Metalle zu klein

Die hochporösen MOFs bestehen meistens aus zwei verschiedenen Typen von Bausteinen. Dabei stecken molekulare, aus organischen Molekülen gebildete Streben in anorganischen Kreuzstücken, die Metallatome enthalten. Nach dem Mischen und Erhitzen entstehen dann durch Selbstorganisation die MOFs. Das weltweit große Interesse an diesen molekularen Regalsystemen rührt daher, dass sie mit unterschiedlichsten Objekten beladen werden können. "Das Spektrum reicht dabei von der Speicherung flüssigen Wasserstoffs in Pkw-Tanks bis hin zu Medikamentendepots", erklärt Prof. Wöll. Auch für die Katalyse sind solche "löchrigen" Materialien interessant. Dazu werden Metallpartikel in die Poren eingelagert, was allerdings eine gewisse Größe der Hohlräume erfordert. "In diesem Zusammenhang standen wir bisher vor einem fundamentalen Problem bei der Synthese der MOFs", sagt Prof. Fischer. "Werden die Poren zu groß, wachsen gleichzeitig mehrere Regalsysteme auf einmal, und es entsteht ein ineinander verschachteltes Geflecht mehrerer Strukturen." Dadurch reduziert sich entsprechend die Größe der einzelnen Regalfächer.

Schicht für Schicht größere Fächer aufbauen

Dieses als Interpenetration (Durchdringung) bezeichnete Problem konnten die Forscher der Lehrstühle für Physikalische Chemie (Wöll) und Anorganische Chemie (Fischer) der Ruhr-Universität jetzt umgehen. Statt dem bisher üblichen Syntheseverfahren - Mischen der Substanzen und anschließendes Erhitzen - entwickelten sie ein neuartiges Verfahren, das als Flüssigphasenepitaxie bezeichnet wird. Dabei werden mit intelligenten Oberflächen beschichtete Substrate abwechselnd in Behälter getaucht, die jeweils nur eine Sorte der Regalbausteine enthalten. Die organischen Oberflächen sorgen dafür, dass nur ein einziges Regalsystem mit entsprechend großen Fächern entsteht, und Duplikate und damit das Durchdringen verhindert werden. "Damit steht der Weg zur Herstellung von Materialien mit deutlich größeren Poren als bisher offen", freut sich Wöll. Zurzeit versuchen die Forscher, in die geräumigen Hohlräume Metallcluster einzulagern, die dann wiederum für die Katalyse und die Sensorik genutzt werden können.

Intelligente Oberflächen

Die intelligenten Oberflächen, die dafür sorgen, dass genau die gewünschten Regalverbindungen entstehen, lassen die Chemiker auf einfache Weise von selbst wachsen: Sie tauchen Metallsubstrate in Lösungen so genannter Organothiole ein, schwefelhaltiger organischer Moleküle. Die Schwefelatome werden mit einer chemischen Reaktion fest an das metallische Substrat gebunden und dienen so als Anker für die organischen Moleküle. Es entsteht ein molekularer Pelz, der als SAM (für engl.: self-assembled monolayer) bezeichnet wird. Auf der Oberfläche dieser SAMs können dann die Regalverbindungen kontrolliert aufwachsen - sogar deren Orientierung lässt sich durch die maßgeschneiderten SAMs vorgeben.

Originalveröffentlichung: Osama Shekhah et al.; "Controlling Interpenetration in Metal-Organic Frameworks by Liquid Phase Epitaxy"; Nature Materials, Published online: 3 May 2009

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Impulsmischer

Impulsmischer von Hybrid Chemie

Pneumatischer Mischer zum Homogenisieren von Lösungen, Suspensionen und Emulsionen

Schonendes, effizientes Mischen, unabhängig vom Füllstand, auch für hohe Viskositäten

pneumatische Mischer
2mag Magnetrührer Katalog Deutsch

2mag Magnetrührer Katalog Deutsch von 2mag

Verschleißfreie Magnetrührer für Labor und Zellkultur

Jetzt den 2mag Katalog 2024 mit innovativen Rührlösungen anfordern

THINKY ARE-250

THINKY ARE-250 von C3 Prozess- und Analysentechnik

Perfekte Mischung und effektive Entgasung in Rekordzeit - Entdecken Sie die revolutionäre Lösung für Ihre Misch- und Entgasungsanforderungen

Planetenzentrifugalmischer
THINKY ARE-500

THINKY ARE-500 von C3 Prozess- und Analysentechnik

Effizientes Mischen und Entgasen in Minuten - Der revolutionäre Misch- und Dispergierer ohne Rührer

Planetenzentrifugalmischer
Zerkleinerer MultiDrive

Zerkleinerer MultiDrive von IKA Werke

Ihr universeller Zerkleinerer: wiegen und zerkleinern Sie in nur einem Gefäß!

Mixen, mahlen, dispergieren - egal ob harte, weiche oder faserige Proben

Zerkleinerer
YSTRAL Conti-TDS

YSTRAL Conti-TDS von ystral

YSTRAL Conti-TDS: Die Nr. 1 in der Pulverbenetzung

Pulver einsaugen, benetzen und dispergieren

Pulverbenetzungsanlagen
Mini Vortex Mixer

Mini Vortex Mixer von Ohaus

Vortex Mixer mit Pfiff: perfektes Mischen für jede Anwendung

Langlebiger Helfer für tägliches Mischen und Vortexen

Mischer
OHAUS Laboratory equipment

OHAUS Laboratory equipment von Ohaus

OHAUS-Laborausrüstung. Do more with OHAUS

Beschränken Sie sich nicht aufs Messen! Entdecken Sie ein ausgeklügeltes Portfolio

Laborgeräte
Innovative Magnetrührer

Innovative Magnetrührer von 2mag

Magnetrührer der Zukunft - für Labor und Technikum

Individuell konfigurierbar, 100 % verschleißfrei, 3 Jahre Garantie

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten