Moleküle in der Mikrofalle

Max-Planck-Forscher fangen Moleküle auf einem Mikrochip und vereinfachen damit viele Experimente drastisch

29.06.2009 - Deutschland

Was Sam Meek und seine Kollegen mit Molekülen auf einem Chip anstellen, erinnert an die Künste manchen Fußballers: Wie der mit einer geschickten Beinbewegung einen Pass stoppt, den Ball einen Moment still hält und ihn dann mit einem Schuss ins Tor versenkt, bremsen die Forscher des Fritz-Haber-Instituts Kohlenmonoxid-Moleküle mit elektrischen Feldern, um sie dann wieder zu beschleunigen und in einem Detektor nachzuweisen - und das alles auf einer Strecke von fünf Zentimetern. Obendrein sind die Moleküle aber rund zehn mal schneller als ein stramm geschossener Ball. Mit dem Kunststück erleichtern die Max-Planck-Forscher Experimente mit Molekülen in der Gasphase. Dafür waren bislang sehr große und aufwändige Geräte nötig.

Fritz-Haber-Institut der MPG

Sam Meek hat die Molekülfalle auf einem Chip konstruiert (links). Sie besteht aus 1.240 Gold-Elektroden, die in dem Schema rechts als gelbe Streifen dargestellt sind. Die Elektroden sind 10 Mikrometer breit, vier Millimeter lang und liegen mit einem Abstand von 40 Mikrometern auf dem Chip. Mithilfe sechs verschiedener Spannungen erzeugen Meek und seine Kollegen im Abstand von 120 Mikrometern zylindrische Potenzialminima (blau), in denen sie Moleküle fangen.

Chemie geht nicht ohne Stoßen: Moleküle prallen zusammen, bleiben aneinander hängen, fliegen wieder auseinander oder zerfallen sogar. Daher lernen Forscher auch viel über die Vorgänge in chemischen Reaktoren oder in der Atmosphäre, wenn sie in der Gasphase Stöße von Molekülen und die Lebensdauer von Zuständen studieren. "Solche Untersuchungen werden jetzt deutlich einfacher", sagt Gerard Meijer, in dessen Abteilung am Fritz-Haber-Institut der Max-Planck-Gesellschaft Forscher jetzt Moleküle auf einem Chip eingefangen haben.

Nach den Plänen der Forscher hat die Berliner Firma micro resist technology mehr als 1.200 Goldelektroden mit weniger als einer halben Haaresbreite Abstand auf einer Glasplatte platziert. Die Elektroden sind jeweils vier Millimeter lang und nur ein Zehntel so dick wie ein Haar. Den Chip positionieren die Forscher in einer Vakuum-Apparatur und legen an die Elektroden sechs verschiedene Wechselspannungen an. So erzeugen sie im Abstand von einem Zehntel Millimeter zylindrische Potenzialminima, die parallel zu den Elektroden laufen und wie Käscher Moleküle fangen. Die Moleküle müssen allerdings ein elektrisches Dipolmoment besitzen, also wie Kohlenmonoxid oder Wasser aus unterschiedlichen chemischen Elementen bestehen.

"Über die Frequenzen der Wechselspannung an den Elektroden steuern wir, wie schnell sich die Potenzialminima über den Chip bewegen", erklärt Sam Meek. Zu Beginn rasen die Fallen mit 325 Metern pro Sekunde, also Überschallgeschwindigkeit, über den Chip. Denn mit dieser Geschwindigkeit treffen die schnellsten Kohlenmonoxidmoleküle auf den Chip, die die Forscher in einem Molekularstrahl in die Mikrofalle treiben. Rund zehn Moleküle landen dann in einer Potenzialfalle, die mit dem Strahl über den Chip saust.

Nun regeln die Wissenschaftler die Frequenz der Wechselspannungen runter und bremsen so die Fallen samt gefangenen Molekülen ab. Dabei nehmen die Fallen aus dem Molekularstrahl nach und nach langsamere Moleküle auf. In dem Strahl fliegen die Moleküle nämlich im Schnitt mit 300 Metern pro Sekunde, die langsamsten aber nur 275 Metern pro Sekunde. Haben die Forscher auf diese Weise mehrere Dutzend Fallen beladen, bringen sie die Moleküle ganz nach Wunsch zum Stillstand oder auf eine beliebige Geschwindigkeit.

"Dabei fokussieren wir die Geschwindigkeit der Moleküle", sagt Sam Meek: Am Ende des Bremsweges variiert ihre Geschwindigkeit nur noch um wenige Meter pro Sekunde. Nun beschleunigen die Forscher die Moleküle wieder und schleudern sie vom Chip auf einen Detektor. "Dabei wählen wir die Geometrie und die Beschleunigung so, dass sich ihre Geschwindigkeit beim Verlassen des Chips wieder auffächert", erklärt Meek: "Auf diese Weise fokussieren wir die Moleküle räumlich, so dass sie alle gleichzeitig auf den Detektor treffen."

Atome lassen sich bereits seit einigen Jahren in magnetischen Fallen auf Chips gefangen. Allerdings können Physiker Atome sehr gut mit Laserstrahlen bremsen, bevor sie die Teilchen auf einem Chip manövrieren. Dabei erfährt das Atom jedes Mal, wenn es ein Laserphoton aufnimmt, einen kleinen Stoß. Geschickt eingesetzt lässt es sich mit diesen kleinen Schubsern stoppen. Das funktioniert aber nur, weil ein Atom auf alle Laser-Photonen in gleicher Weise reagiert. Moleküle tun das nicht - wenn sie ein Photon absorbieren, machen sie alles Mögliche, gebremst werden sie jedenfalls nicht. Daher müssen die Berliner Forscher sie auf dem Chip zur Ruhe bringen.

"Da wir jetzt auch Moleküle auf Chips fangen können, ermöglichen wir viele neue physikalische Experimente", sagt Gerard Meijer. So wird es künftig viel leichter die Lebensdauer von Zuständen zu bestimmen. Der Zustand eines Moleküls hängt von der Energie seiner Elektronen ab, aber auch davon, wie stark es schwingt oder rotiert. Da die Mikrofalle nur bei bestimmten Zuständen der Moleküle verfängt, brauchen die Forscher nun nur zu messen, wie lange sie das fragliche Molekül auf dem Chip fangen und anschließend noch nachweisen können.

Die Forscher möchten in der Mikrofalle auch Stöße verschiedener Moleküle untersuchen. Zu diesem Zweck müssten sie Gemische von Molekülen in die Falle jagen. "Wir hoffen, dass wir dabei Quanteneffekte beobachten können, die bislang experimentell kaum nachweisbar waren." Auf diese Weise ließen sich auch Fortschritte auf dem Weg zu einem Quantencomputer erzielen. Auf einem Chip gespeicherte polare Moleküle könnten nämlich als Quantenbits dienen und Rechnungen ausführen, indem sie miteinander wechselwirken. "Davon sind wir natürlich noch weit entfernt", sagt Gerard Meijer: "Wir sind aber zuversichtlich, dass wir mit der Molekülfalle ein ganz neues Forschungsfeld eröffnen."

Originalveröffentlichung: Samuel A. Meek, Horst Conrad, Gerard Meijer; "Trapping Molecules on a Chip"; Science, 26. Juni 2009

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Berghof Reaktortechnologie - Hoch- und Niederdruckreaktoren, Druckbehälter und metallfreie Reaktoren

Berghof Reaktortechnologie - Hoch- und Niederdruckreaktoren, Druckbehälter und metallfreie Reaktoren von Berghof

Sichere Hoch- und Niederdrucksysteme für aggressive Medien

Korrosionsbeständige Reaktoren mit PTFE-Auskleidung - individuell konfigurierbar

Hochdruckreaktoren
BÜCHI MINICLAVE

BÜCHI MINICLAVE von C3 Prozess- und Analysentechnik

Flexible Kleinreaktorsysteme - Säurebeständigkeit, visuelle Kontrolle und individuelle Anpassungsmöglichkeiten für vielfältige Anwendungen!

Reaktorsysteme
PhotoSyn™

PhotoSyn™ von Uniqsis

Erleben Sie die Zukunft der Photochemie

Durchflussreaktor mit intuitiver Steuerung für höhere Ausbeuten und höhere Selektivität

Durchflussreaktoren
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...