Laser beschleunigt Protonen auf bisher höchste Energien
Intensives Laserlicht, das auf Materie trifft, ist in der Lage, Teilchen auf mikroskopisch kleinen Strecken auf Energien zu beschleunigen, die sonst nur mit großen Beschleunigeranlagen möglich sind. Weltweit erforschen Physiker das Prinzip der Laser-Teilchenbeschleunigung, um damit Partikelstrahlung z.B. für den zukünftigen Einsatz in der Krebsbehandlung zu erzeugen. Prof. Thomas Cowan, Direktor des Instituts für Strahlenphysik am Forschungszentrum Dresden-Rossendorf, ist einer der ersten Wissenschaftler, der Untersuchungen zur Laserbeschleunigung von Protonen durchführte. Die aktuellen Rekordmessungen sind das Ergebnis von Experimenten von Sandrine Gaillard im Rahmen ihrer Promotion, die von Prof. Cowan betreut wird. Sie entstanden gemeinsam mit Wissenschaftlern des FZD, des Sandia National Laboratory, der University of Nevada, Reno, sowie der University of Missouri, Columbia, am Los Alamos National Laboratory in New Mexico, USA. Es wurden Strahlungsenergien von ca. 67 Megaelektronvolt (MeV) erzielt. 1 Elektronvolt ist die Bewegungsenergie, die ein Teilchen erhält, wenn es mit einer Spannung von 1 Volt beschleunigt wird.
Der neue Weltrekord in der Laser-Teilchenbeschleunigung ist wesentlich von speziell geformten Targets, also Zieloberflächen, abhängig. Die Wissenschaftler beschossen mit ultrakurzen Laserpulsen von rund 600 Femtosekunden und ca. 80 Joule dünne Folien, aus denen kegelartige Strukturen herausstülpen, deren Spitze wiederum mit einer hauchdünnen Folie bedeckt ist. Die Oberflächen wurden nanotechnologisch verändert und von der Firma Nanolabz hergestellt.
Wenn das intensive Laserlicht auf die Innenseiten dieser ambossartigen Mikrostrukturen trifft, treten Elektronen aus dem Material aus. Im Gegensatz zu glatten Oberflächen wirken die Mikrostrukturen wie eine Elektronenfalle und schließen die Elektronen ein. In dem dabei erzeugten elektrischen Feld können die Protonen auf höhere Energien als bisher möglich beschleunigt werden. Die Wissenschaftler setzten Röntgenstrahlung ein, um die Wechselwirkungen zwischen dem Laserstrahl und den Mikrostrukturen aufzuklären und abzubilden. Genauere Untersuchungen stehen noch aus, aber Computersimulationen, durchgeführt von FZD-Doktorand Thomas Kluge, beschreiben die neuen Daten bereits gut und ermöglichen damit tiefere theoretische Einblicke in die Prozesse. Als nächstes wollen die Forscher die Dichte des Protonenstrahls messen - neben der Energie eine wesentliche Voraussetzung für medizinische Anwendungen.
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.