Unter Beobachtung: Rastlose Atome lassen Werkstoffe altern
In Festkörpern geht es mitunter "wild" zu. So wechseln beispielsweise in einem Goldring pro Sekunde bisweilen Milliarden von Atomen ihre Position. Das häufige Herumspringen der Atome spielt sich dabei nicht nur für Laien im Verborgenen ab. Auch den Physikern entzog sich dieser Vorgang lange der tatsächlichen Beobachtung. Genug Ansporn, dies zu ändern, hatten die Wissenschafter aber auf jeden Fall: Denn die Ruhelosigkeit der Atome ist für das Altern - und damit den Verlust bestimmter Eigenschaften von Werkstoffen verantwortlich.
Das Wissen um die Bewegung der Atome hat sich nun entscheidend vertieft: Ein Forscherteam der Fakultät für Physik an der Universität Wien konnte die Atome erstmals beim Springen durch einen Festkörper direkt verfolgen. Modernste Technologie in Form des europäischen Elektronen-Synchrotrons ESRF in Grenoble, Frankreich, das die Erzeugung spezieller Röntgenstrahlen von extrem hoher Intensität und Qualität ermöglicht, war dazu notwendig. Diese Röntgenstrahlen - die derzeit weltweit in nur drei Forschungsanlagen produziert werden können - ermöglichten den Forschern die Beobachtung der Wanderung der Atome in einer Kupfer-Gold-Legierung.
Sprungrate verdoppelt
Im Detail fanden die Wissenschafter heraus, wie weit und in welche Richtung die Atome springen, und wie dies durch die Temperatur beeinflusst wird. Projektmitarbeiter Mag. Michael Leitner dazu: "Unsere Untersuchungen haben gezeigt, dass Atome bei einer Temperatur von 270 Grad Celsius etwa einmal in der Stunde ihren Platz im Kristallgitter wechseln. Aber nicht nur das: Denn steigert man die Temperatur um 10 Grad Celsius, so verdoppelt sich die Sprungrate der Atome. Umgekehrt funktioniert das Ganze natürlich genauso. Wird es um 10 Grad kühler, dann springen die Atome nur halb so oft."
Auf der Grundlage des nun durchgeführten Experiments soll in Zukunft auch die Messung atomarer Bewegung in vielen, auch technisch wichtigen metallischen Systemen möglich sein. Damit ist die Basis geschaffen, um Alterungsprozesse von Werkstoffen verstehen zu können, die von der inneren Unruhe der Atome maßgeblich beeinflusst werden: So beruht beispielweise die Festigkeit von Automotoren oder die Funktionsweise von Computern darauf, dass deren Fremdatomen unter kontrollierten Produktionsbedingungen bei zumeist hohen Temperaturen ein bestimmter Platz zugewiesen wird. Leider tendieren die Atome aber auch dazu, bei hohen Temperaturen schnell wieder die ihnen "zugewiesenen" Plätze zu verlassen - und die Werkstoffe verlieren ihre erwünschten Eigenschaften.
Der Weg ist das Ziel
Abgesehen von den Erkenntnissen des Experiments rund um die springenden Atome ist auch dessen Realisierung spektakulär. Denn erst durch den ausgeklügelten Einsatz verschiedener Filter konnten dem Synchrotron spezielle, als "kohärent" bezeichnete, Röntgenstrahlen entlockt werden. Allein dies bedeutet bereits einen enormen Fortschritt für das Forschungsgebiet des Wiener Physikerteams. Mag. Leitner dazu: "Derzeit wird daran gearbeitet, die Qualität der Röntgenstrahlen noch weiter zu erhöhen. So wird beispielsweise gerade in Hamburg der europäische Röntgenlaser XFEL gebaut. Dieser Laser wird wieder neue Möglichkeiten bieten, auf die wir uns bereits freuen."
Der geplante Einsatzbereich des europäischen Röntgenlasers geht dabei über die Untersuchung diverser Materialien weit hinaus. So soll er auch für die Aufklärung von Strukturen lebenswichtiger Substanzen, wie etwa von Proteinen, herangezogen werden können. Noch steckt die Nutzung der "kohärenten" Röntgenstrahlen in den Kinderschuhen - das vom FWF unterstützte Projekt ist jedoch bereits ein erster, wichtiger Schritt hin zu deren universeller Anwendung unter führender Teilnahme österreichischer Wissenschafter.
Originalveröffentlichung: M. Leitner, B. Sepiol, L. Stadler, B. Pfau & G. Vogl; "Atomic diffusion studied with coherent X-rays"; Nature Materials 2009, 8, 717720
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Glasfaserfiltermaterialien von Cytiva
Fordern Sie ein Glasmikrofaser-Musterpaket für Ihre Batterieentwicklung an
Effiziente und konsistente Ergebnisse
GF/C and 934-AH RTU (Environmental) von Cytiva
Erfüllen Sie die Abwasservorschriften mit dem richtigen Filter
Rationalisierung der Laborabläufe und Gewährleistung hochwertiger Ergebnisse
FIBRETHERM von C. Gerhardt
Automatische Faserextraktion für die Futtermittelanalyse
FIBRETHERM von C. Gerhardt: Effizient – Präzise – Methodenkonform
Mini-UniPrep™ von Cytiva
Verbesserte HPLC-Probenvorbereitung
Sparen Sie 66 % Probenvorbereitungszeit und senken Sie die Kosten um 40 %
VICI Jour Katalog 15INT von VICI
Der VICI Jour Katalog - Zubehör für Flüssigchromatographie und Liquid Handling
Kapillaren, Schläuche, Fittinge, Filter, Safety-Produkte, Werkzeuge uvm
Whatman filtration product guide von Cytiva
Neuer Filtrations-Katalog - geballte Informationen auf 286 Seiten
Entdecken Sie perfekt passende Filter für Ihre Anwendung im Labor
Hahnemühle LifeScience Katalog Industrie & Labor von Hahnemühle
Große Vielfalt an Filterpapieren für alle Labor- und industrielle Anwendungen
Filtrationslösungen im Bereich Life Sciences, Chemie und Pharma
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.