Neue Einblicke in polymere Solarzellen

17.09.2009 - Deutschland

Ein interdisziplinäres Forscherteam von Chemikern, Physikern und Mathematikern der TU Eindhoven und der Universität Ulm hat zum ersten Mal hochauflösende dreidimensionale (3D) Bilder vom Inneren einer polymeren Solarzelle erzeugt. Dies liefert wichtige neue Informationen über die Nanostruktur von polymeren Solarzellen und deren Bedeutung für die Leistungsfähigkeit der Zellen.

Universität Ulm

Elektronentomographisches Bild einer Polymer-Metalloxid-Solarzelle. Die 3D-Darstellung der Morphologie im Nanometerbereich zeigt ein komplexes Netzwerk aus Metalloxid (gelb) unterhalb einer Aluminiumkontaktschicht (grau) in einer Polymermatrix.

Diese Forschungsergebnisse bringen ganz wesentliche neue Einsichten in die Funktionsweise von polymeren Solarzellen. Allerdings hat diese Art von Solarzellen noch nicht die Leistungsfähigkeit ihrer aus Silizium gefertigten Pendants. Der große Vorteil von polymeren Solarzellen hingegen ist, dass sie sehr schnell und einfach produziert werden können. Dies ist sogar im Rollenvordruck möglich, was diese Technologie auch sehr kostengünstig erscheinen lässt. Zusätzlich sind polymere Solarzellen sehr flexibel, was sie besonders geeignet für die Verwendung in Fahrzeugen oder sogar an Kleidung macht.

Hybrid polymere Solarzellen

In Hybrid-Solarzellen, die aus einer Mischung von zwei verschiedenen Materialien bestehen, werden ein Polymer und ein Metalloxid verwendet, um elektrische Ladungen an den Phasengrenzen zu erzeugen, wenn das Material von der Sonne beschienen wird. Der Vermischungsgrad dieser beiden Materialien ist dabei ein entscheidender Faktor für die Effizienz. Eine sehr starke Vermischung vergrößert die Phasengrenzen, was die Entstehung von elektrischen Ladungen verbessert. Gleichzeitig erschwert es aber den Abtransport der Ladungen, da dies zu langen und verwundenen Wegen führt, die die entstandenen Ladungen zurücklegen müssen, um zur Elektrode zu gelangen. Vermischen sich die beiden Materialien hingegen kaum, wird genau der gegenteilige Effekt beobachtet. Die sehr unterschiedliche chemische Natur von Polymeren und Metalloxiden bereitet Schwierigkeiten, die Nanostruktur zu kontrollieren. Den Forschern in Eindhoven ist es nun gelungen, dieses Problem größtenteils damit zu lösen, indem sie eine Substanz verwenden, die sich gut mit dem Polymer mischt und dann anschließend das gewünschte Metalloxid liefert. Diese Vorgehensweise ermöglicht eine bessere Vermischung, was dazu führt, dass bis zu 50 Prozent der absorbierten Photonen als elektrische Ladungen an einen externen Stromkreislauf abgegeben werden können.

Vermischung im Nanobereich

Wie wichtig der Grad der Vermischung ist, wurde durch die Visualisierung der Nanostruktur mit Hilfe von 3D-Bildern klar aufgezeigt. Bisher war es nicht möglich, solche 3D-Darstellungen herzustellen. Mit dem Einsatz von 3D-Elektronentomographie konnte das Forscherteam jedoch eine bisher nicht erreichte Detailgenauigkeit der Darstellung der Nanostruktur erreichen. Mit Hilfe dieser dreidimensionalen Bilder konnten die Forscher des Instituts für Stochastik der Universität Ulm geometrische Kenngrößen der Nanostruktur der Solarzellen bestimmen, die sie mit der Leistungsfähigkeit der Solarzellen korrelieren konnten. Hierzu zählen zum Beispiel typische Abstände zwischen den beiden Phasen oder Eigenschaften von Perkolationswegen, wodurch die Grad der Verbundenheit der Metalloxid-Phase mit der Elektrode beschrieben wird. Diese Strukturkenngrößen, die quantitativ erfasst worden sind, stimmen darüber hinaus perfekt mit den gemessenen Leistungsdaten der Solarzellen überein.

Zukünftige Fragestellungen

Obwohl die hier betrachteten polymeren Solarzellen zu den leistungsstärksten ihrer Art gehören, werden nur zwei Prozent der Energie des Sonnenlichts in elektrische Ladungen umgewandelt. Deshalb ist es das Ziel, diesen Anteil stark zu vergrößern. Dies soll zum einen durch die bessere Kontrolle der Morphologie der photoaktiven Schicht erreicht werden, indem zum Beispiel neue Polymere synthetisiert werden, die sich kontrollierter mit Metalloxid mischen lassen. Zusätzlich sollen neue Polymere oder Moleküle entwickelt werden, die einen größeren Anteil des Sonnenlichts absorbieren können. Erst wenn diese Probleme gelöst sind, werden die Vorteile von Hybrid-Solarzellen, also die niedrigen Herstellungskosten und die thermische Stabilität der Nanostruktur, vollständig zum Tragen kommen.

Originalveröffentlichung: Stefan D. Oosterhout et al.; "The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells"; Nature Materials, Published online: 13 September 2009

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

HYPERION II

HYPERION II von Bruker

FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung

Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle

FT-IR-Mikroskope
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller