Isolierschicht für molekulare Drähte

Bausteine für die Nanotechnologie nach dem Vorbild der Natur

07.06.2002

Wie eine Bohnenpflanze sich beim Wachsen um die Kletterstange windet, legen sich biegsame Ketten aus reaktionsträgen chemischen Verbindungen spiralförmig um eine starre Kohlenstoff-Brücke, die zwei Metallzentren verbindet. Die denkbar feinsten elektrisch leitenden Drähte aus aneinandergereihten Kohlenstoffatomen können so mit einer Isolierung versehen werden. Damit ist der Forschungsgruppe um Prof. John A. Gladysz vom Institut für Organische Chemie der Universität Erlangen-Nürnberg ein neuer bahnbrechender Erfolg in der Nanotechnologie gelungen. Das Ergebnis ihrer Strategie ist zudem in einem zweiten Sinn einzigartig: es entsteht eine Doppelhelix, die in ihrer Struktur der DNS gleicht, aber ohne die "Querstützen", welche die zwei Stränge im Zellkern wie bei einer Leiter zusammenhalten. Derartige Moleküle waren bisher nicht bekannt.

Drei Mitarbeiter von Prof. Gladysz, die Diplom-Chemiker Jürgen Stahl, Eike Bauer und Wolfgang Mohr, beschreiben in der Juni-Ausgabe der Fachzeitschrift "Angewandte Chemie" zwei unterschiedliche Wege zur Synthese von isolierten "molekularen Drähten". Der eine besteht darin, den Prozess der Selbstorganisation in Gang zu setzen, der zur Bildung der schützenden Doppelspirale führt. Statt der Natur ihren Lauf zu lassen, treibt der andere dagegen den zielgerichteten Zusammenbau neuer Materialien in der Organometallchemie voran. Beide zielen auf die Lösung eines Problems ab, das sich mit den Fortschritten in der Miniaturisierung von Bauteilen für Elektrik und Elektronik stellt.

Während der letzten fünf Jahre machten Chemiker schnelle Fortschritte bei der Synthese molekularer Versionen von stromführenden Bauteilen wie Schaltern, Transistoren oder Gleichrichtern und von komplizierteren Geräten wie Motoren und Maschinen. Mit dem schrittweisen Aufbau solcher "funktionaler Materialien" aus Molekülen wurde die Nanotechnologie geboren. Dazu zählen neuartige, drahtähnliche Moleküle, die in der Arbeitsgruppe von Prof. Glasdysz entwickelt werden. Zwei Übergangsmetalle sind darin durch eine stabähnliche lineare Kohlenstoffkette verbunden. Die Metalle können oxidiert oder reduziert werden; Elektronen und Ladung können dann von einem Metall zum anderen wandern. Der Erlanger Gruppe gelang es, mehr als 20 Kohlenstoffatome aneinanderzureihen, was einen Abstand von drei Nanometern (Milliardstel eines Meters) zwischen den Metallen bedeutet. Andere Forscher haben bimetallische Verbindungen mit anderen Arten von starren, verbrückenden Liganden hergestellt, doch lineare Kohlenstoffketten stellen das äußerste mögliche Limit der Miniaturisierung dar.

Genau wie Haushaltskabel müssen solche molekularen Drähte isoliert werden, um das Molekül zu schützen und einen ungestörten Stromfluss zu ermöglichen. Werden einem Molekül Elektronen entzogen oder zugeführt, wird es häufig reaktiver, und zerstörerische Reaktionen mit anderen stromführenden Bausteinen, dem Lösungsmittel oder der Luft sind zu befürchten. Hüllen um solche Moleküle, die die Rolle der Isolationsschicht beim vertrauten Elektrokabel übernehmen, sind offensichtlich wünschenswert, doch bisher ist zur Verwirklichung wenig geschehen.

Prof. Gladysz und seine Mitarbeiter stellten zunächst Kettenmoleküle mit einer Kohlenstoffbrücke zwischen zwei Platinatomen her, deren Liganden (angehängte Gruppen oder Atome) leicht ausgetauscht werden konnten. Danach synthetisierte das Team Moleküle, in denen zwei Phosphordonoratome durch eine Kette von Methylengruppen verbunden sind. Methylen- oder CH2-Gruppen sind die Grundbausteine von gesättigtem Fett und Paraffinwachs, zweier Isolatoren. Diese flexible Kette muss mindestens 50% länger sein als die feste Kohlenstoffbrücke. So kann sie sich um den "Draht" wickeln, wenn die Enden beider Arten von Ketten sich verbinden, wobei die Phosphoratome die zuvor am Platin angelagerten Liganden ersetzen.

Zwei "Isolator-Moleküle" docken auf diese Weise am molekularen Draht an. Das Ergebnis dieses selbstorganisierenden Prozesses versetzt Prof. Gladysz in Begeisterung: "Das Endresultat ist ein doppelhelicales Molekül von atemberaubender Schönheit." Die treibende Kraft für die Anordnung in einer Doppelspirale ist nicht offensichtlich; es scheint, als ob die Moleküle diese Struktur "nach Belieben" ausbilden.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

ERBAdry

ERBAdry von CARLO ERBA Reagents

Wasserfreie Lösungsmittel von CARLO ERBA Reagents im cleveren Redesign

ERBAdry-Serie begeistert durch neueste Generation von Septen und Verschlusskappen

Lösungsmittel
Thermo Scientific™ Dionex™ ASE™ 150 oder 350 Accelerated Solvent Extractor Systeme

Thermo Scientific™ Dionex™ ASE™ 150 oder 350 Accelerated Solvent Extractor Systeme von Thermo Fisher Scientific

Accelerated Solvent Extraction (ASE) - die beste Probenvorbereitung für die GC und LC

Beschleunigte Lösemittelextraktion - bessere Extraktionen, schneller und mit weniger Lösemittel

Extraktionssysteme
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...