Antiferromagnete stellen Potenzial für die Spin-basierte Informationstechnologie unter Beweis
Grundlage für ultraschnelle und stabile Speicherelemente
Im aufstrebenden Feld der Spin-basierten Elektronik wird Information üblicherweise durch die Ausrichtung der Magnetisierung von ferromagnetischen Materialien gespeichert. Zusätzlich wird jedoch auch daran geforscht, Antiferromagnete zu nutzen. Antiferromagnete sind Materialien ohne makroskopische Magnetisierung, aber mit mikroskopisch wechselnder Ausrichtung ihrer magnetischen Momente. Hierbei wird die Information durch die Richtung der Modulation der magnetischen Momente gespeichert, ausgedrückt durch den sogenannten Néel-Vektor. Antiferromagnete ermöglichen prinzipiell deutlich schnellere Schreibvorgänge und sind sehr stabil gegenüber externen Störfeldern. Allerdings bedeuten diese Vorteile auch, dass sowohl die Manipulation als auch das Auslesen der Orientierung des Néel-Vektors eine große Herausforderung darstellen. Dies konnte bisher nur für die halbmetallische Verbindung CuMnAs, also Kupfermanganarsenid, erreicht werden, die jedoch im Hinblick auf etwaige Anwendungen diverse Nachteile aufweist.

Kristallstruktur von Mn2Au mit antiferromagnetisch geordneten magnetischen Momenten
©: Libor Šmejkal JGU
Wissenschaftlern des Instituts für Physik der Johannes Gutenberg-Universität Mainz (JGU) ist nun ein wesentlicher Fortschritt gelungen: Wie im Online-Wissenschaftsjournal Nature Communications publiziert, konnten sie an dünnen Schichten der bereits bei hohen Temperaturen antiferromagnetisch ordnenden metallischen Verbindung Mn2Au aus Mangan und Gold ein strominduziertes Schalten des Néel-Vektors experimentell nachweisen. Insbesondere wurde dabei ein zehnfach größerer Magnetowiderstand als bei CuMnAs beobachtet. Entsprechende Berechnungen hat Libor Šmejkal erstellt, der im Rahmen einer Kollaboration mit der Akademie der Wissenschaften der Tschechischen Republik seine Promotion in der Arbeitsgruppe Sinova an der JGU durchführt. „Diese Berechnungen sind wichtig zum Verständnis der experimentellen Arbeiten, die mein Doktorand Stanislav Bodnar vornimmt. Dadurch könnte Mn2Au zu einem Türöffner für zukünftige antiferromagnetische Spin-Elektronik werden“, erklärt Dr. Martin Jourdan, der Projektleiter der Studie. „Über ihren großen Magnetowiderstand hinaus ist ein entscheidender Vorteil dieser Verbindung, dass sie keine toxischen Komponenten enthält und auch bei höheren Temperaturen genutzt werden kann.“
Originalveröffentlichung

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.