Batterie oder Brennstoffzelle?

Jülicher Forscher berechnen Kosten des Infrastrukturausbaus

01.02.2018 - Deutschland

Die Zukunft der Mobilität ist elektrisch. Doch noch ist unklar, welche Technologie unter der Motorhaube das Rennen machen wird: Batterien, die regelmäßig an eine Ladesäule gehängt werden müssen, oder Brennstoffzellen, die Wasserstoff von der Tankstelle benötigen. Die Kosten für die jeweilige Infrastruktur hängen stark davon ab, wie viele Fahrzeuge versorgt werden müssen. Ein Vergleich, den Experten vom Forschungszentrum Jülich angestellt haben, zeigt: Ab mehreren Millionen Fahrzeugen ist der Aufbau einer Wasserstoffinfrastruktur günstiger. Beide Technologien sind notwendig, um die Verkehrswende erfolgreich zu meistern.

Copyright: H2 MOBILITY / Forschungszentrum Jülich, Robinius et al.

Vergleichs-Szenario: Umstieg auf erneuerbare Energien mit Batterie und Brennstoffzelle.

Copyright: H2 MOBILITY / Forschungszentrum Jülich, Robinius et al.

Gesamtkosten für die Infrastruktur von batteriebetriebenen Fahrzeugen („battery-electric vehicles“, BEV) und Brennstoffzellen-Fahrzeugen („fuel cell electric vehicles“, FCEV) in Abhängigkeit vom Fahrzeugbestand („electric vehicles“, EVs)

Copyright: H2 MOBILITY / Forschungszentrum Jülich, Robinius et al.

Beitrag zum Klimaschutz: Brennstoffzellen-Fahrzeuge ermöglichen die Nutzung von Überschuss-Strom aus erneuerbaren Energien und schneiden deshalb besser ab.

Copyright: H2 MOBILITY / Forschungszentrum Jülich, Robinius et al.
Copyright: H2 MOBILITY / Forschungszentrum Jülich, Robinius et al.
Copyright: H2 MOBILITY / Forschungszentrum Jülich, Robinius et al.

„Deutschland hat sich ambitionierte, aber notwendige Ziele beim Klimaschutz gesetzt“, sagt Martin Robinius vom Jülicher Institut für Energie- und Klimaforschung (IEK-3) und einer der Autoren der Studie. „Doch gerade im Verkehrssektor liegen wir noch weit hinter den angestrebten Reduktionen zurück.“ Der Übergang zu emissionsarmen Fahrzeugflotten könne aber gelingen durch E-Fahrzeuge, die ihre Energie aus erneuerbaren Quellen beziehen, argumentiert der Wirtschaftsingenieur.

Wenn die Windräder in Deutschlands Norden auf Hochtouren laufen, erzeugen sie so viel Strom, dass das Netz ihn nicht aufnehmen kann. Mit diesem Strom könnte man Fahrzeuge antreiben. Von zentraler Bedeutung dürfte es dabei sein, in welcher Form die Energie gespeichert und transportiert wird: Sollen zukünftig batteriebetriebene Elektroautos über unsere Straßen rollen oder Brennstoffzellenfahrzeuge, die mit Wasserstoff betankt werden?

Beide Technologien stehen derzeit noch am Anfang ihrer Marktentwicklung. Gerade deshalb sei es von zentraler Bedeutung, die Kosten der zukünftigen Infrastruktur frühzeitig abzuschätzen, um nicht in eine technologische Sackgasse zu geraten: „Setzen wir von Anfang an alles auf nur eine Karte, dürfte es schwierig werden, das System umzustellen, wenn sich die Rahmenbedingungen verändern“, argumentiert Martin Robinius. Die Jülicher Studie, die vom Gemeinschaftsunternehmen H2 MOBILITY beauftragt wurde, soll hier für Orientierung sorgen.

Viele Experten favorisieren zurzeit die Batterie, denn das elektrische Netz existiert bereits. Es müsste bloß eine gewisse Menge an weiteren Ladesäulen aufgestellt werden. Außerdem überzeugt ein vollkommen elektrischer Prozess durch einen hohen Wirkungsgrad. Das sieht beim Wasserstoff anders aus: Ein Großteil der Infrastruktur muss noch aufgebaut werden: Das sind zum einen Elektrolyseure, die den Strom aus Rekordzeiten der Windenergie nutzen, um Wasser zu spalten. Der Wasserstoff, der dabei entsteht, kann zunächst in unterirdischen Salzkavernen gelagert werden, um dann beispielsweise über ein Pipelinesystem an die Tankstellen verteilt zu werden.

Die Experten aus Jülich haben beide Szenarien analysiert und kommen zu dem Ergebnis: Die Rentabilität hängt davon ab, wie viele Fahrzeuge mit Batterie- oder Brennstoffzellenantrieb auf den Straßen unterwegs sind. Die Investitionen in den Infrastrukturausbau sind für beide Technologien bei geringen Fahrzeugbeständen bis zu einigen Hunderttausend nahezu gleich. Der Wasserstoff würde in diesem Zeitraum noch von der Industrie aus konventionellen Quellen bereitgestellt werden.

Es dürfte dann eine Übergangsphase folgen, während der die Erzeugung und Speicherung von grünem Wasserstoff mit Hilfe von Überschussstrom ausgebaut wird. Die Kosten für die dafür notwendigen Elektrolyseure treiben den Preis für den Wasserstoff in die Höhe. Gleichzeitig ermöglichen diese es, saisonale Überschüsse der erneuerbaren Energien in Form von Wasserstoff über längere Zeiten zu speichern, was mit der Batterietechnik alleine so nicht möglich ist.

„Elektroautos mit Batterie stellen in dieser Phase den kostenoptimalen Pfad dar, langfristig sind sie aber nicht optimal“, erklärt Martin Robinius. „Ab mehreren Millionen Fahrzeugen beginnt sich das Verhältnis umzukehren.“ Die Studie aus Jülich betrachtet eine Marktdurchdringung von bis zu 20 Millionen Fahrzeugen, was knapp der Hälfte des heutigen Bestands entspricht. Dann sind die Investitionen in eine Ladesäulen-Infrastruktur mit rund 51 Mrd. € höher im Vergleich zur Wasserstoff-Infrastruktur (40 Mrd. €). Die Mobilitätskosten hingegen unterscheiden sich in diesem Stadium kaum. Sie liegen in beiden Fällen zwischen 4,5 und 4,6 Eurocent pro Kilometer.

Die Gesamtkosten seien in beiden Fällen deutlich geringer als Investitionen in anderen Infrastruktur-Bereichen. Die Studienautoren empfehlen daher, beide Pfade auszubauen. „Wir brauchen beide Infrastrukturen, und wir können sie uns auch leisten: Batterien und Wasserstoff schließen sich nicht gegenseitig aus. Und wir müssen so schnell wie möglich damit beginnen, sie beide aufzubauen. Darin liegt sicher auch eine große Chance für die Innovationsfreudigkeit in unserem Land der Ingenieure“, erklärt Institutsleiter Prof. Detlef Stolten.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Multi-Liter Hydrogen Gasgenerator

Multi-Liter Hydrogen Gasgenerator von VICI

Labor-Wasserstoffversorgung neu definiert

Bis zu 18 l/min Wasserstoff mit 99,99997% Reinheit und intuitiver Touchscreen-Steuerung

Wasserstoff-Generator
CATLAB Catalysis and Thermal Analysis

CATLAB Catalysis and Thermal Analysis von Hiden Analytical

Ein System zur Katalysatorcharakterisierung, kinetischen und thermodynamischen Messungen

Integriertes Mikroreaktor-Massenspektrometer für Reaktionstests, TPD/TPR/TPO und Pulschemisorption.

Massenspektrometer
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren