Weltweit erstes schaltbares Quanten-Metamaterial untersucht
Auf dem Weg zum Quantencomputer
NUST MISIS
Das Team aus Forschern vom Jenaer Leibniz-Institut für Photonische Technologien (Leibniz-IPHT), dem Karlsruher Institut für Technologie (KIT) und der National University of Science and Technology (NUST MISIS) in Moskau stellte erstmals ein Quanten-Metamaterial her, das auf besondere Weise mit elektromagnetischer Strahlung im Mikrowellenbereich wechselwirkt. Das Metamaterial besteht aus einer linearen Anordnung von 15 Meta-Atomen, den Quantenbits (Qubits): Schleifen von wenigen Mikrometern Durchmesser aus Aluminium, die bei ihrer Arbeitstemperatur von etwa -273°C elektrischen Strom supraleitend und damit verlustfrei transportieren. An einigen Stellen sind die Aluminiumringe durch wenige Nanometer dünne Tunnelstrukturen, die Josephson-Kontakte, unterbrochen. So entstehen supraleitende Schwingkreise, in denen Strom nur in zwei definierten Zuständen fließt.
Mit Magnetfeld schaltbare Eigenschaften
Die Forscher konstruierten nun erstmals ein Metamaterial aus sogenannten Zwillings-Qubits, die aus zwei miteinander verbundenen Schleifen bestehen und damit statt drei, fünf Josephson-Kontakte besitzen. Entstanden sind die Strukturen im Reinraum des Leibniz-IPHT. „Wir haben untersucht wie sich die Zwillings-Qubits verhalten, wenn wir sie mittels eines Magnetfeldes in zwei verschiedene Zustände bringen. Dabei zeigt das Metamaterial eine für uns unerwartete Eigenschaft. Über das Magnetfeld können wir seine Durchlässigkeit für Strahlung im Mikrowellenspektrum genau steuern. Dass man die Transparenz dieser speziellen Quanten-Metamaterialien über die Konfiguration des Grundzustandes der Qubits ein- bzw. ausschalten kann, hat uns überrascht. Das war bislang völlig unbekannt,“ beschreibt der Leibniz-IPHT-Wissenschaftler Prof. Evgeni Il’ichev die Entdeckung. Die Forschungsergebnisse, die unter Leitung von Prof. Alexey Ustinov (NUST MISIS) entstanden, publizierten die Wissenschaftler im hochrangigen Fachblatt Nature Communications.
Qubits: Ein System in zwei Zuständen gleichzeitig
Im Unterschied zu den Einheiten (Bits) eines klassischen Rechners nehmen die Qubits nicht nur die Zustände 0 und 1 an. Sie gehorchen den Gesetzen der Quantenmechanik und befinden sich in einem überlagerten Zustand, der gleichzeitig 0 und 1 ist. Im Fall supraleitender Qubit-Schaltkreise fließt der magnetfeldinduzierte Strom zugleich links (0) und rechts herum (1). Allerdings existieren die Überlagerungszustände nur so lange bis sie gemessen werden – in diesem Moment nimmt das System entweder den Wert 0 oder 1 an. Durch die Überlagerungszustände können Quantencomputer eine große Zahl an Rechenoperationen parallel verarbeiten, während heutige Rechner diese nacheinander ausführen. Die Anzahl der Operationen steigt exponentiell mit der Anzahl der eingesetzten Qubits. Die Firma IBM bietet online-Zugriff auf einen Supraleiter-basierten Quantencomputer mit 20 Qubits.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.