Lösung des Hyperfein-Rätsels rückt näher
Untersuchungen an Wismut-Atomkernen verbinden Experiment und Theorie
AG Nörtershäuser
Das optische Spektrum eines Atoms kommt durch die Wechselwirkung des Lichts mit den Elektronen in der Atomhülle zustande. Aber auch Einflüsse der inneren Struktur des Atomkerns treten bei sehr präzisen Messungen zutage und werden als „Hyperfeinstruktur“ bezeichnet. Bei der Messung der Hyperfeinstruktur in schweren hochgeladenen Ionen mit nur wenigen verbleibenden Elektronen hatten Darmstädter Physiker eine Abweichung der experimentell bestimmten Aufspaltungen zu theoretischen Vorhersagen gefunden. Die beobachteten Abweichungen wurden als „Hyperfein-Rätsel“ bekannt. Sie warfen die Frage auf, ob die Wechselwirkung zwischen den wenigen an den Atomkern gebundenen Elektronen und dem Kern unter dem Einfluss der dort herrschenden gewaltig starken Magnetfelder vollständig verstanden ist. Als nächster entscheidender Schritt zur Lösung des Rätsels stand die Neubestimmung der Stärke des magnetischen Feldes des Atomkerns an. Theoretische Vorhersagen hängen sehr stark von dieser experimentell zu bestimmenden Größe ab.
Physiker des Institutes für Kernphysik (AG Nörtershäuser) und des Institutes für Festkörperphysik (AG Vogel) der TU Darmstadt arbeiteten zusammen, um die Stärke des dem Atomkern innewohnenden Magnetfeldes – das magnetische Moment – neu zu messen. Dazu verwendeten sie die Technik der Kernresonanzspektroskopie, die als MRT in der Medizin Anwendung findet. Sie beruht darauf, dass Atomkerne ein Magnetfeld aufweisen, wenn sie wie das untersuchte Wismutisotop einen Kernspin besitzen, also um eine Achse rotieren. Nord- und Südpol des Kernmagnetfeldes sind entlang dieser Achse ausgerichtet, und unter dem Einfluss eines externen Magnetfeldes richten sich die Pole entlang der äußeren Magnetfeldachse aus. Strahlt man nun Radiowellen geeigneter Frequenz auf die untersuchten Atome, kann die Orientierung der Kernmagnete umgeklappt werden. Dies lässt sich beobachten. Die Frequenz der Radiowellen, bei der die Pole sich umkehren, hängt vom kernmagnetischen Moment ab. Kennt man die Frequenz, kann man schlussfolgern, wie groß das magnetische Moment ist. Dazu brachten die Forscher eine Flüssigkeit angereichert mit Wismutionen in einen supraleitenden Magneten ein und strahlten über eine kleine Spule Radiofrequenzen ein, bis sie bei den Wismutionen eine Polumkehr beobachteten.
Die Schwierigkeit dabei: Die chemische Umgebung der Ionen, also die Flüssigkeit, in der sie sich befinden, verändert das externe Magnetfeld in der Nähe des Atomkerns. Dadurch wird die genaue Bestimmung des magnetischen Moments beeinflusst. Dieser störende Effekt muss herausgerechnet werden. Dafür wurden in einer Theoriegruppe der Universität in St. Petersburg und am Helmholtz-Institut Jena hochspezialisierte quantentheoretische Berechnungen durchgeführt. Es stellte sich heraus, dass bei der Verwendung von Wismutnitratlösungen der Effekt viel stärker ist als bisher angenommen. Messungen mit Hilfe von Wismutnitratlösungen erwiesen sich somit als ungenügend.
Einen Durchbruch erzielten die Forscher schließlich durch die Verwendung einer komplexen metallorganischen Verbindung, die in organischer Lösung Hexafluoridobismutat(V)-Ionen bereitstellt. Die Darmstädter Forscher fanden Unterstützung bei einer auf Fluorchemie spezialisierten Arbeitsgruppe der Universität Marburg, in der eine Probe der benötigten Substanz hergestellt wurde. Damit konnten sehr viel schmälere Resonanzkurven als mit Wismutnitrat gemessen und präzisere Aussagen über die magnetischen Kräfte am Kern getroffen werden. Auch quantentheoretisch ließ sich dieses System sehr viel genauer berechnen als das bislang verwendete Wismutnitrat.
Die Wissenschaftler nutzten den neu bestimmten Wert für das magnetische Moment des stabilen Wismutisotops und trafen eine theoretische Vorhersage der Hyperfeinstrukturaufspaltungen in den hochgeladenen Ionen. Der Abgleich mit experimentell gewonnen Werten zeigte: Diese Vorhersage stimmte weitgehend mit den Ergebnissen von laserspektroskopischen Messungen überein. „Die Aussage, dass dies bereits die vollständige Lösung des Hyperfein-Rätsels ist, wäre zu diesem Zeitpunkt noch verfrüht. Dennoch handelt es sich sicherlich um einen beträchtlichen Teil der Lösung“, erläutert Prof. Wilfried Nörtershäuser vom Institut für Kernphysik der TU Darmstadt. „Um vollständige Klarheit über das Wechselspiel von Atomkern und Hülle zu erlangen und somit den grundlegenden Vorhersagen der Quantennatur in starken Feldern näher zu kommen, sind noch weitere Experimente notwendig.“ Die Physiker der TU möchten nun magnetische Momente an Atomkernen mit nur einem einzelnen gebundenen Elektron oder an nackten Atomkernen ohne Elektronenhülle untersuchen, um die komplexen Einflüsse der Hülle auf die Messungen zu unterbinden. Solche Experimente seien am Darmstädter GSI Helmholtzzentrum für Schwerionenforschung für die kommenden Jahre mit der Unterstützung von mehreren Arbeitsgruppen der TU Darmstadt geplant, so Nörtershäuser.
Originalveröffentlichung
Leonid V. Skripnikov, Stefan Schmidt, Johannes Ullmann, Christopher Geppert, Florian Kraus, Benjamin Kresse, Wilfried Nörtershäuser, Alexei F. Privalov, Benjamin Scheibe, Vladimir M. Shabaev, Michael Vogel, and Andrey V. Volotka; "New Nuclear Magnetic Moment of 209Bi – Resolving the Bismuth Hyperfine Puzzle"; Phys. Rev. Lett.; 120, 093001 – Published 27 February 2018
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!