Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
Leibniz-IPHT
Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer Dichte. In den Faserkern koppeln die Jenaer Forscher ultraschnelle Pulse polarisierten Laserlichts ein. Da die optische Dichte von Kohlenstoffdisulfid und dadurch die Geschwindigkeit der Lichtausbreitung im Kern von der Intensität des eingestrahlten Lichts abhängt, brechen die Pulse in eine Vielzahl von Solitonen, Lichtpakete verschiedener Wellenlänge, auf. Sie bilden das für das menschliche Auge nicht sichtbare, sehr breite Lichtspektrum (Superkontinuum) im nahen bis mittleren Infrarotbereich (1,2 bis 3,0 µm Wellenlänge).
Vergangenes Jahr lieferten die Forscher bereits experimentelle Beweise für eine neue Dynamik der Solitonen, die aufgrund der nicht-linearen optischen Eigenschaften des Flüssigkerns entsteht. Nun ist es ihnen gelungen die Ausbreitung der Wellenpakete und die Lichterzeugung durch Temperatur- und Druckunterschiede entlang der Faser zu kontrollieren. Damit realisierten sie neue, stabile Superkontinuum-Lichtquellen mit flexibel einstellbarer spektraler Bandbreite.
Flexibles Spektrum für die medizinische Bildgebung
„Bisher steuerte man die Bandbreite des Lichtspektrums in Faserlasern beispielsweise über die Größe des Kerns aus Spezialglas. Nach der Herstellung der Fasern ist man jedoch auf einen spektralen Bereich festgelegt. Flüssigkernfasern mit ihren einzigartigen thermodynamischen Eigenschaften ermöglichen es uns, die Signalwellenlängen nach Bedarf anzupassen oder gar ein gleichmäßiges Spektrum zu erzeugen. Das ist für Bildgebungsverfahren in der medizinischen Diagnostik interessant“, erklärt Mario Chemnitz, Doktorand am Leibniz-IPHT und Erstautor des Artikels.
Um das volle Potential der Faserlaser auszuschöpfen, untersuchte das Jenaer Forscher-Team vom Leibniz-IPHT, der Friedrich-Schiller-Universität, des Helmholtz-Instituts und des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik den Einfluss von Temperatur und Druck auf die Solitonen-Aufspaltung im Flüssigkern der Faser.
„Die Computersimulationen und Experimente haben bewiesen, dass die Wellenlänge des ursprünglichen Solitons über den gesamten Temperaturbereich konstant bleibt. Die Wellenpakete, die aus dessen resonanter Abstrahlung hervorgehen, zeigen allerdings eine temperaturabhängige spektrale Verschiebung. Mit nur 13 Kelvin Temperaturunterschied können wir die Bandbreite der Abstrahlung um mehrere hundert Nanometer verschieben“, so Chemnitz weiter. Das Ziel der Forscher ist es, weitere geeignete Flüssigkeiten für optische Fasern zu untersuchen und so bislang unzugängliche Spektralbereiche im mittleren Infrarot zu erschließen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Mikroskopie-Zubehör von AHF analysentechnik
Optimieren Sie Ihre Fluoreszenz-Mikroskopie mit Premium-Zubehör
Entdecken Sie optische Filter und LED-Lichtquellen der nächsten Generation
Ionendetektoren für Massenspektroskopie von Hamamatsu Photonics
Innovative Detektorlösungen für die Massenspektrometrie
Einzigartige Geräte für die nächste Generation der Massenspektralanalyse
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.