Langsam, aber effizient

Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission

14.08.2018 - Deutschland

In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Forscherteam nun entdeckt, dass auch eine sehr große Zahl an relativ langsamen Elektronen in diesen Wechselwirkungen erzeugt werden. Diese niedrigenergetischen Elektronen stellen einen bisher fehlenden Zusammenhang her, um die Prozesse zu verstehen, die ein intensiver Laserpuls in einem Nanopartikel auslöst. Dies ist hochrelevant für die Abbildung von Biomolekülen auf ultrakurzen Zeitskalen.

Schütte

Atomistische Simulation der Laser-induzierten Cluster-Explosion

Wenn ein Nanopartikel einem intensiven Laserpuls ausgesetzt ist, verwandelt er sich in ein Nanoplasma, das sich extrem schnell ausdehnt. Verschiedene Phänomene finden statt, die auf der einen Seite faszinierend sind, auf der anderen Seite aber auch wichtig für Anwendungen. Beispiele sind die Erzeugung hochenergetischer Elektronen, Ionen und neutraler Atome, die effiziente Erzeugung von Röntgenstrahlen, und sogar Kernfusion wurde beobachtet. Während diese Beobachtungen recht gut verstanden sind, hat eine andere Beobachtung, nämlich die Erzeugung hochgeladener Ionen, Forscher bisher vor ein Rätsel gestellt. Der Grund dafür ist, dass Modellrechnungen eine sehr effiziente Rekombination von Elektronen und Ionen im Nanoplasma vorhergesagt haben, was zu einer drastischen Reduzierung der Ladungszustände der Ionen führen würde.

In einer Forschungsarbeit, die in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht wurde, hat ein internationales Forschungsteam vom Imperial College London, der Universität Rostock, dem Max-Born-Institut, der Universität Heidelberg sowie ELI-ALPS dabei geholfen, dieses Rätsel zu lösen. Winzige Cluster bestehend aus einigen tausend Atomen wechselwirkten mit ultrakurzen, intensiven Laserpulsen. Die Forscher fanden heraus, dass die große Mehrheit der emittierten Elektronen sehr langsam waren. Des Weiteren hat sich herausgestellt, dass die niedrigenergetischen Elektronen mit einer Verzögerung im Vergleich zu den hochenergetischen Elektronen emittiert wurden.

Erstautor der Studie Dr. Bernd Schütte, der die Experimente am Imperial College London im Rahmen eines Forschungsstipendiums durchgeführt hat und nun am Max-Born-Institut forscht, sagt: "Viele Faktoren wie z.B. das Erdmagnetfeld beeinflussen die Bewegung langsamer Elektronen, was die Detektion sehr schwierig macht und erklärt, wieso diese Elektronen bisher noch nicht beobachtet wurden. Unsere Beobachtungen waren unabhängig von den spezifischen Cluster- und Laserparametern, und sie helfen uns dabei, die komplexen Prozesse auf der Nanoskala zu verstehen."

Um die experimentellen Beobachtungen zu verstehen, haben Forscher um Prof. Thomas Fennel von der Universität Rostock und dem Max-Born-Institut die Wechselwirkung des intensiven Laserpulses mit dem Cluster simuliert. "Unsere atomistischen Simulationen haben gezeigt, dass die langsamen Elektronen aus einem Zwei-Stufen Prozess resultieren, wobei die zweite Stufe auf einem finalen Schwung beruht, der Forschern bisher entgangen ist", erklärt Fennel. Zunächst löst der intensive Laserpuls Elektronen aus individuellen Atomen. Diese Elektronen bleiben im Cluster gefangen, da sie stark von den Ionen angezogen werden. Wenn sich diese Anziehung durch das Auseinanderdriften der Partikel während der Clusterexpansion verringert, wird die Bühne für den zweiten wichtigen Schritt bereitet. Dabei kollidieren schwach gebundene Elektronen mit einem hochangeregten Ion, was ihnen den finalen Schwung gibt, um dem Cluster zu entfliehen. Da diese korrelierten Prozesse sehr schwierig zu simulieren sind, waren die Computerressourcen des Norddeutschen Verbundes für Hoch- und Höchstleistungsrechnen (HLRN) essenziell, um das Puzzle zu lösen.

Die Forscher haben herausgefunden, dass die Emission langsamer Elektronen ein sehr effizienter Prozess ist, der es einer großen Zahl von langsamen Elektronen ermöglicht, dem Cluster zu entfliehen. Eine wichtige Konsequenz daraus ist, dass es sehr viel schwieriger für hochgeladene Ionen ist, Partner-Elektronen zu finden, mit denen sie rekombinieren können. Viele der Ionen verbleiben daher in hohen Ladungszuständen. Die Entdeckung der langsamen Elektronen kann dabei helfen zu verstehen, warum hochgeladene Ionen in Wechselwirkungen von intensiven Laserpulsen mit Clustern beobachtet werden. Diese Erkenntnisse könnten wichtig sein, da langsame Elektronen eine große Rolle für Strahlenschäden von Biomolekülen spielen, für die die Cluster ein Modell darstellen.

Prof. Jon Marangos vom Imperial College London sagt: "Seit Mitte der 1990er Jahre haben wir an der Emission von energetischen Partikeln (Elektronen und hochgeladene Ionen) von atomaren Clustern in Laserfeldern gearbeitet. Es ist überraschend, dass bis jetzt die verzögerte Elektronenemission bei viel niedrigeren Energien übersehen wurde. Nun stellt sich heraus, dass dies ein sehr wichtiges Phänomen ist, das für die Mehrheit der emittierten Elektronen verantwortlich ist. Von daher könnte es eine große Rolle spielen, wenn kondensierte Materie oder große Moleküle jeglicher Art mit einem hochintensiven Laserpuls wechselwirken."

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...