Einzigartiges Verhalten von Quecksilberkernen aufgeklärt

05.10.2018 - Deutschland

Einem internationalen Wissenschaftlerteam mit Beteiligung Greifswalder Physiker ist gelungen, sprunghafte Veränderungen exotischer Quecksilberisotope zu klären. Dazu wurden die Teilchen 177Hg bis 185Hg am Ionenseparator ISOLDE des europäischen Forschungszentrums CERN hergestellt und untersucht.

Grafik: Frank Wienholtz

Messdaten des mittleren quadratischen Ladungsradius von Quecksilberatomkernen (in Abweichungen vom Kern mit A= 198) als Funktion der Massenzahl. Die Einfügungen illustrieren die Kernformen die den Bereichen der „normalen“ Kerne (unten rechts) und derer mit großer Abweichung von einer Kugel (oben links).

In den 1970er Jahren wurde bei Vermessungen der optischen Spektren der Elektronen in der Atomhülle bestimmter Quecksilberisotope beobachtet, dass sich die Kerngröße sprunghaft verändert. Ihre Kernform wechselt nämlich als Funktion der Massenzahl A zwischen leicht abgeplattet und ähnlich einem Rugby-Ball hin und her. Das auffällige Verhalten wurde unterhalb von A = 186 gefunden. Bei A = 185 beobachtete man einen großen Sprung im Kernradius. Dieses Verhalten wiederholte sich bei den beiden nächstkleineren ungeradzahligen Isotopen mit A = 183 und 181, während die geradzahligen Isotope mit A = 184 und 182 dem allgemeinen Trend folgten.

Erst jetzt, mehr als 40 Jahre später, konnten die zwei sich daraus ergebenden Fragen mithilfe modernerer Forschungstechnologien geklärt werden: Gibt es auch bei Quecksilberkernen mit noch kleinerer Massenzahl diesen sprunghaften Formenwechsel? Wie kann man dieses Verhalten auf die innere Struktur der Kerne zurückführen?

Die erste Frage konnte nun mit aktuellen Messungen geklärt werden. Die Herausforderung bestand darin, die Isotopenkette der kurzlebigen Atome bis hinunter zu 177Hg zu vermessen, d. h. zu Halbwertszeiten von lediglich der Dauer eines Wimpernschlags. Dazu waren verschiedene neue technische Entwicklungen notwendig, die in den Experimenten erstmals kombiniert wurden. So kam bei der Aufnahme der Laserspektren unter anderem das Greifswalder Multireflexions-Flugzeit-Massenspektrometer zum Einsatz.

Mit diesen erheblich empfindlicheren Messmethoden konnte nachgewiesen werden, dass das besondere Verhalten der Quecksilberisotope bei Massenzahlen kleiner A = 180 endet und nur noch die „normalen“, leicht oblaten Kernformen zu finden sind.

Zusätzlich zu den Experimenten führten Kollegen der theoretischen Physik umfangreiche Berechnungen durch, die das beobachtete Verhalten auf bestimmte quantenmechanische Zustände der Protonen und Neutronen in den Kernen zurückführen konnten. Damit ist nicht nur das jahrzehntealte Rätsel um neutronenarme Quecksilberatomkerne gelöst. Die Ergebnisse zeigen auch die Zuverlässigkeit der Kernrechnungen, die nun auch andere Bereiche der Nuklidkarte, des „Periodensystems der Atomkerne“, angewendet werden können.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Massenspektrometrie

Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!

35+ Produkte
5+ White Paper
30+ Broschüren
Themenwelt anzeigen
Themenwelt Massenspektrometrie

Themenwelt Massenspektrometrie

Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!

35+ Produkte
5+ White Paper
30+ Broschüren