Eisenreiche Scheibchen im Halbleiter
Forscher erzeugen ungewöhnliche Kristallstruktur
HZDR / S. Zhou
„Wir haben in unserem Ionenstrahlzentrum schnelle Eisen-Ionen auf einen Kristall aus Indiumarsenid geschossen, einem Halbleiter aus Indium und Arsen“, erläutert Dr. Shengqiang Zhou, Physiker am HZDR-Institut für Ionenstrahlphysik und Materialforschung. „Dabei drang das Eisen etwa 100 Nanometer tief in die Kristalloberfläche ein.“ Die Eisen-Ionen blieben dabei in der Minderheit – sie machten nur wenige Prozent in der dünnen Oberflächenschicht aus. Mit einem Laser feuerten die Forscher anschließend Lichtpulse auf den Kristall. Da die Blitze ultrakurz waren, schmolz nur die Oberfläche auf. „Für viel weniger als eine Mikrosekunde waren die obersten 100 Nanometer eine heiße Suppe, wogegen der Kristall darunter kalt und schön geordnet blieb“, beschreibt Zhou das Resultat.
Bereits einen Wimpernschlag nach dem Laserbeschuss kühlte die Kristalloberfläche wieder ab. Dabei geschah das Ungewöhnliche: Zwar nahm die Oberfläche grundsätzlich wieder die Gitterstruktur von Indiumarsenid ein. Aber die Abkühlung verlief derart rasant, dass den Eisenatomen nicht genügend Zeit blieb, um reguläre Gitterplätze im Kristall zu finden und zu besetzen. Stattdessen taten sich die Metall-Atome mit ihresgleichen zusammen und bildeten bemerkenswerte Strukturen – zweidimensionale, parallel angeordnete Scheibchen.
„Dass sich die Eisenatome in dieser Weise angeordnet haben, war eine Überraschung“, sagt Shengqiang Zhou. „Wir konnten somit erstmals weltweit solch eine lamellenartige Struktur erzeugen.“ Als die Experten das neugeschaffene Material näher untersuchten, stellten sie fest, dass es durch den Einfluss des Eisens magnetisch geworden war. Außerdem gelang es den Forschern aus Polen und Deutschland, den Prozess theoretisch zu erfassen und per Computer zu simulieren. „Die Eisen-Atome ordneten sich deshalb zu einer Scheibchenstruktur, weil dies der energetisch günstigste Zustand war, den sie in der Kürze der Zeit einnehmen konnten“, fasst Prof. Tomasz Dietl vom internationalen Forschungszentrum MagTop der Polnischen Akademie der Wissenschaften das Resultat der Berechnungen zusammen.
Relevant könnte das Ergebnis zum Beispiel für das Verständnis von Supraleitern sein – einer Stoffklasse, die elektrischen Strom völlig verlustfrei leiten kann. „Lamellenartige Strukturen finden sich auch in vielen supraleitenden Materialien“, erläutert Zhou. „Unsere Materialverbindung könnte somit als Modellsystem dienen und dabei helfen, das Verhalten von Supraleitern besser zu verstehen.“ Dadurch lassen sich dann vielleicht auch deren Eigenschaften optimieren: Damit Supraleiter funktionieren, muss man sie heute auf vergleichsweise tiefe Temperaturen von beispielsweise minus 200 Grad Celsius kühlen. Das Ziel vieler Fachleute ist, diese Temperaturen schrittweise zu erhöhen – bis hin zu einem Traummaterial, das bereits bei gewöhnlichen Umgebungstemperaturen seinen elektrischen Widerstand verliert.