Zäher, härter, bruchfester: Künstliches Perlmutt nach Mass
Forscher entwickelten ein von Perlmutt inspiriertes Material, dessen physikalische Eigenschaften gezielt eingestellt werden können
Kunal Masania / ETH Zürich
Diese Struktur untersuchen und imitieren ETH-Forschende von der Gruppe Komplexe Materialien, geleitet von André Studart. Die Materialwissenschaftler nutzen dazu ein spezielles, von ihnen entwickeltes Verfahren, um solche perlmutt-ähnliche Materialien zu erzeugen.
So verwenden sie anstatt der Kalkplättchen kommerziell erhältliche Aluminiumoxid-Plättchen von wenigen dutzend Mikrometern Grösse, als Fugenkitt fungiert ein Epoxidharz. In einem rotierenden Magnetfeld richten die Forscher die in wässriger Lösung verteilten magnetisierten Plättchen wunschgemäss in einer Richtung aus, und unter hohem Druck und Temperaturen um 1000 Grad Celsius verfestigen sie das Material unter Beigabe des Harzes. Dadurch entsteht ein Verbundmaterial mit einer Mikrostruktur, die der von natürlichem Perlmutt ähnelt.
Metalloxidbrücken verstärken Material
Um das künstliche Perlmutt noch stabiler und härter zu machen, verwendete das Team neu Aluminiumoxid-Plättchen, die mit Titanoxid beschichtet sind. Ab rund 800 Grad Celsius bilden sich auf der Oberfläche der Plättchen Tröpfchen aus Titanoxid, die zu mineralischen Verbindungsbrücken ausreifen und so das gesamte Gefüge verfestigen. «Diese Brücken beeinflussen die Festigkeit des Materials massgeblich», sagt Kunal Masania, Co-Autor einer Studie, die soeben in der Fachzeitschrift PNAS erschienen ist.
Die Dichte dieser Titan-Brücken lässt sich bei bestimmtem Druck und bei bestimmter Temperatur genau einstellen, sodass künstliches Perlmutt mit gewünschten Eigenschaften wie einer bestimmten Steifigkeit, Stärke und Bruchzähigkeit entsteht. Mithilfe eines Modells und von Experimenten berechneten die Forscher, welche Druck- und Temperaturverhältnisse die Ausbildung der jeweiligen Eigenschaften fördern, welche vergleichbar sind mit der Steifigkeit von Kohlenfaserverbundwerkstoffen. Dem Team ist es gelungen, einen neuen Weltrekord in der Kombination der Steifigkeit, Härte und Risswiderstand in dieser Klasse von bioinspirierten Materialen zu realisieren.
Mit der neu entwickelten Technik lassen sich perlmuttähnliche Werkstoffe erzeugen, die für die jeweilige Anwendung massgeschneiderte Eigenschaften aufweisen. Denkbare Anwendungen sind etwa der Flugzeugbau, die Raumfahrt oder auf dem Bau.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.