Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
Ungewöhnliche Strukturen wechselwirkender Elektronen entdeckt
Illustration: University of Stuttgart/PI 1
Ausgangspunkt der Untersuchungen war der Phasenübergang vom isolierenden Vanadiumdioxid (VO2) zu einem Metall bei circa 70 Grad Celsius. Sieht man sich die optische Polarisation des Lichtes bei diesem Übergang genau an, so erkennt man, dass sich zuerst kleine metallische Tröpfchen unter einem Mikrometer in der isolierenden Phase bilden, die mit zunehmender Temperatur wachsen. Kühlt man dann wieder ab, so nehmen sie die platte Form eines Diskus an. Das reflektierte Licht hat eine völlig andere Polarisation, je nachdem ob man abkühlt oder aufwärmt. Aus diesem Unterschied kann auf die Form und Dichte der metallischen Tröpfchen direkt am Phasenübergang geschlossen werden. Eine vollständige theoretische Beschreibung liegt zwar noch nicht vor, aber man sieht schon, dass die Dicke des Films einen großen Einfluss auf die Form der Tröpfchen hat.
Da die Strukturen am Phasenübergang von Metallen zu Isolatoren meist kleiner sind als die Wellenlänge des Lichts, kann man sie nicht mit einem normalen Mikroskop beobachten. Daher nutzten die Stuttgarter Physiker ein Nahfeld-Mikroskop. Bei diesem macht man sich zunutze, dass eine atomar dünne Spitze ganz knapp über dem Material Licht streut und tiefe Blicke in die lokalen elektronischen Eigenschaften gibt. So konnten die Wissenschaftler auch an einem molekularen Kristall den Metall-Isolator-Phasenübergang untersuchen, der dort bei -138 Grad Celsius auftritt.
Sie sahen ein gestreiftes Muster von abwechselnd metallischen und isolierenden Regionen, die nicht breiter als ein Mikrometer sind. Diese bilden sich aufgrund der anomalen thermischen Ausdehnung und Verspannungen entlang einer Kristallachse aus und erinnern an die Streifen eines Zebras. Das zufällige Entstehen und die allmähliche Ausbildung mit Änderung der Temperatur können gut mathematisch simuliert werden. „Es scheint als hätten die Stuttgarter Physiker einen ganz neuen Aspekt elektronischer Materialien entdeckt, die aufgrund ihrer Wechselwirkung faszinierende Strukturen bilden“, so Studienleiter Prof. Martin Dressel.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.