Vielversprechende Polymer-Sorte entwickelt
Neue Synthesemethode für S-PPV-Polymere patentiert
Copyright: TU Wien
Copyright: TU Wien
Schwefel statt Sauerstoff
„PPVs sind Polymere mit technologisch wunderbaren Eigenschaften“, sagt Florian Glöcklhofer vom Institut für Angewandte Synthesechemie der TU Wien. „Sie leiten elektrischen Strom und sie interagieren mit Licht auf eine Weise, die sie für Solarzellen oder LEDs hochinteressant macht.“ Sie bestehen aus einer langen, festen Kohlenwasserstoff-Struktur, an der bestimmte Seitengruppen angehängt sind. Durch die Wahl unterschiedlicher Seitengruppen kann man die elektronischen Eigenschaften des Materials einstellen.
Bisher wurden PPVs verwendet, deren Seitengruppen über ein Sauerstoffatom mit dem Rest des Polymers verbunden sind – sogenannte O-PPVs. „Wenn es gelingt, diese Sauerstoff-Seitengruppen durch Schwefel-Seitengruppen zu ersetzen, dann entsteht ein neues Polymer, ein S-PPV, mit deutlich verbesserten Eigenschaften“, sagt Florian Glöcklhofer. „Wir wussten, dass das zu einem besseren Transport elektrischer Ladung durch das Molekül führen kann und dass die Stabilität dadurch verbessert wird.“
Als Glöcklhofer beschloss, solche S-PPVs herzustellen, wurde ihm von erfahrenen Kollegen zunächst davon abgeraten. „Es hieß, das sei zu schwierig“, erzählt Glöcklhofer.
Trotzdem wagte er sich an das Projekt – und stellte rasch fest, dass es sich tatsächlich um eine ganz besonders schwierige Herausforderung handelte. „Wichtig war es uns, einen einfachen, billigen Syntheseweg zu finden – mit möglichst wenigen Syntheseschritten, ohne teure Spezial-Katalysatoren“, betont Florian Glöcklhofer. „Schließlich wollen wir Materialien herstellen, die industriell eingesetzt werden können. Und kommerziell erfolgreich kann S-PPV nur sein, wenn die Herstellung ein bestimmtes Niveau an Kosten nicht übersteigt.“
Nach vier Jahren harter Arbeit und einigen bitteren Rückschlägen hatte es das Team dann geschafft: Ein verlässliches, einfaches Verfahren zur Herstellung von S-PPVs war gefunden. Mit Hilfe von Mikrowellenstrahlung werden passende Monomere hergestellt. Sie werden polymerisiert und können dann an den Seitengruppen modifiziert werden. „Das funktioniert erstaunlich gut“, sagt Glöcklhofer. „Die Reaktion läuft innerhalb von Sekunden ab. Die Farbe ändert sich – man kann also direkt dabei zusehen.“
Patentierte Technik
Mit Hilfe des Forschungs- und Transfersupports der TU Wien wurde der neue Syntheseweg nun patentiert. Florian Glöcklhofer ist sehr zuversichtlich, was den kommerziellen Erfolg der Erfindung betrifft: „Es ist ein einfacher Syntheseweg für eine neue, höchst vielversprechende Klasse von Polymeren. Die Synthese kommt mit kostengünstigen Ausgangsmaterialien aus, wir brauchen keine Palladium-Katalysatoren oder ähnliche teure Zwischenschritte. Die Methode ist auf industrielle Mengen skalierbar, das Verfahren ist gut reproduzierbar und liefert ein Produkt, das nicht nur verbesserte elektronische Eigenschaften, sondern auch eine höhere Stabilität aufweist“, sagt Glöcklhofer. Außerdem sind S-PPVs auch noch vergleichsweise ungiftig und bioverträglich – das macht sie zu ausgezeichneten Kandidaten für den Einsatz in der Medizin.
Zusammengearbeitet hat das TU-Team bei diesem Projekt mit einer Forschungsgruppe des Imperial College in London, wo Glöcklhofer vor kurzem ein Marie Skłodowska-Curie Fellowship der Europäischen Kommission angetreten hat.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.