Nanopartikel beeinflussen ihre flüssige Umgebung
Studie präsentiert atomare Einblicke
Christian Wißler
Aufgrund von theoretischen und experimentellen Studien ging die Forschung schon länger davon aus, dass die Moleküle einer Flüssigkeit sich wie in einer Hülle um ein festes Nanopartikel herum gruppieren. Innerhalb dieser sogenannten „Solvathülle“ – im Falle einer wässrigen Lösung wird sie auch als „Hydrathülle“ bezeichnet – lassen sich, entsprechend der Anordnung der Flüssigkeitsmoleküle, drei bis fünf Schichten unterscheiden. Bisher waren jedoch nur Informationen über die Anzahl und Reichweite dieser Schichten zugänglich.
Die Wissenschaftler um die Bayreuther Juniorprofessorin Dr. Mirijam Zobel haben sich daher erstmals die atomaren und molekularen Strukturen dieser Schichten experimentell genauer angeschaut. Dafür wurden Messungen mit hochenergetischen Röntgenstrahlen an der Diamond Lightsource, einem Elektronensynchrotron in Großbritannien, durchgeführt. Die Untersuchungen konzentrierten sich auf magnetische Nanopartikel, wie sie heute in der Biomedizin – insbesondere in der gezielten Wirkstoffabgabe – und in der Magnetresonanztomographie zum Einsatz kommen. Dabei fanden die Forscher heraus, dass sogar die Abstände zwischen den Atomen der Wassermoleküle, die ein Nanopartikel unmittelbar umgeben, exakt gemessen werden können. So wurde erstmals sichtbar, wie sich die Wassermoleküle an das Nanopartikel anlagern: in einigen Fällen durch dissoziative Bindungen, in anderen Fällen durch molekulare Adsorption.
„Es hat uns überrascht, dass sich Wasser in der Nähe von winzigen magnetischen Eisenoxid-Nanopartikeln ähnlich strukturiert wie an ebenen Eisenoxid-Oberflächen im makroskopischen Bereich. Wir konnten jetzt nachweisen, dass es vor allem von der kristallinen Struktur eines Nanopartikels abhängt, wie sich die Flüssigkeitsmoleküle in seiner Nachbarschaft anordnen. Kleine organische Moleküle, die sich auf der Oberfläche des Nanopartikels befinden und es stabilisieren, haben hingegen keinen direkten Einfluss auf die Anordnung der Flüssigkeitsmoleküle“, erklärt Projektleiterin Mirijam Zobel.
„Dies sind wichtige Erkenntnisse für die weitere Forschung und ihre Anwendungen. Denn die Moleküle, welche die Nanopartikel stabilisieren, dienen als Anknüpfungspunkte, wenn die Nanopartikel für biomedizinische Anwendungen beispielsweise mit Antikörpern beladen werden. Daher ist es für die Freisetzung solcher medizinischen Wirkstoffe von großer Bedeutung, den Einfluss dieser Moleküle auf die Eigenschaften und das Verhalten der Nanopartikel genau zu kennen“, erklärt die Bayreuther Doktorandin Sabrina Thomä M.Sc., die Erstautorin der in Nature Communications veröffentlichten Studie. Juniorprofessorin Mirijam Zobel ergänzt: „Die Untersuchung der Solvathüllen von Nanopartikeln hat sich international als eine eigene Fachrichtung etabliert. Wir sind überzeugt, dass sich die von uns entwickelte Methode, die wir für die neue Studie eingesetzt haben, allgemein anwenden lässt. So werden wir in Zukunft noch viele weitere spannende Einblicke in der ‚Solvation Science‘ erlangen können, wie etwa auf den Gebieten der Katalyse oder der Keimbildung.“