Giftig und aggressiv und doch viel genutzt

Untersuchungen mit Neutronen beenden Wissenschaftsstreit über Struktur des Fluors

29.03.2019 - Deutschland

In Zahnpasta, Teflon, LEDs und Medikamenten zeigt es seine positiven Seiten – doch elementares Fluor ist extrem aggressiv und hochgiftig. Versuche, die Kristallstruktur von festem Fluor mit Röntgenstrahlen zu bestimmen, endeten vor 50 Jahren mit Explosionen. Mit Neutronen der Forschungs-Neutronenquelle Heinz Maier Leibnitz (FRM II) ist es einem Forschungsteam nun gelungen, die tatsächliche Struktur des Fluors aufzuklären.

M. Hölzel / TUM

Prof. Florian Kraus und sein Mitarbeiter Dr. Sergei Ivlev am Pulverdiffraktometer SPODI.

F. Kraus / M. Hölzel

Die Kristallstruktur von alpha-F2, das unter 45,6 K stabil ist. Es kristallisiert in der monoklinen Raumgruppe C2/c mit einer F-F-Bindungslänge von 140,4 pm.

M. Hölzel / TUM
F. Kraus / M. Hölzel

Fluor ist das reaktivste chemische Element und zudem sehr giftig. Gleichzeitig wird es aber in vielen Bereichen verwendet. Beim ersten Versuch, die Atomabstände von festem Fluor zu bestimmen, verwendete ein Forschungsteam in den USA im Jahr 1968 Röntgenstrahlen. Eine schwierige Aufgabe, denn Fluor wird erst bei etwa minus 220 °C fest. Und schon beim Abkühlen des aggressiven Elements kam es zu Explosionen.

Chemie-Nobelpreisträger Linus Pauling zweifelte die Ergebnisse des Teams 1970 an und schlug ein alternatives Strukturmodell vor – den experimentellen Nachweis aber blieb er schuldig. Auch kein anderer Chemiker wagte sich 50 Jahre lang an die heikle Aufgabe.

Mithilfe von Neutronen aus der Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Garching gelang es nun Wissenschaftlern der Universität Marburg, der Technischen Universität München (TUM) und der Aalto Universität Finnland, die Struktur aufzuklären.

Neutronen als ideale Sonde

Neutronen sind besonders gut geeignet, Fluoratome präzise zu lokalisieren. Weil Neutronen außerdem auch dickwandige Probenbehälter durchdringen können, waren sie für Professor Florian Kraus und sein Team aus Marburg die Methode der Wahl. Unterstützt wurden sie bei ihren Untersuchungen am Pulverdiffraktometer SPODI im FRM II von TUM-Wissenschaftler Dr. Markus Hölzel und seinen Kollegen.

Für die Untersuchungen realisierten die Forscher einen speziellen Messaufbau, um das Fluor bei sehr tiefen Temperaturen untersuchen zu können. Dazu verwendeten sie Materialien, die besonders widerstandsfähig gegenüber Fluor sind und eine sichere Handhabung gewährleisten.

Anwendung in LEDs, Zahnpasta und Arzneimitteln

„Die extrem präzisen Messungen mit Neutronen sind wichtig, um Berechnungen für verschiedenste Anwendungen machen zu können“, sagt Florian Kraus. „Bei anderen Elementen gibt es Kristallstrukturen in hoher Präzision bereits seit Jahren. So wurde die Kristallstruktur von Sauerstoff bereits 35 Mal untersucht und Kohlenstoff gar 108 Mal.“

Doch auch Fluor ist aus dem Alltag nicht mehr wegzudenken. Fluoride werden unter anderem als Zusatz in Zahnpasta verwendet, es ist in Leuchtmitteln enthalten, die das kalte LED-Licht in ein warmes Weiß verwandeln. Auch in vielen Arzneimitteln setzt man Fluorverbindungen ein, um die Wirksamkeit zu erhöhen.

Neutronenmessungen bestätigen die Vermutung des Nobelpreisträgers

Auch wenn die Messungen aus den 1960er Jahren keine präzisen Werte hervorgebracht hatten, war Florian Kraus dennoch sehr überrascht über den großen Unterschied: „Mit den Neutronenmessungen konnten wir den Atomabstand um 70 Prozent genauer auflösen“, sagt der Chemiker. „Und die Kristallstruktur zeigt, dass Nobelpreisträger Linus Pauling mit seinen Zweifeln recht hatte.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...