Anorganische Perowskit-Absorber für den Einsatz in Dünnschicht-Solarzellen
Einem Team am Helmholtz-Zentrum Berlin ist es gelungen, durch Ko-Verdampfung anorganische Perowskit-Dünnschichten bei moderaten Temperaturen herzustellen – ein Nachtempern bei hohen Temperaturen entfällt. Dadurch lassen sich Dünnschichtsolarzellen aus diesem Material deutlich leichter herstellen. Anorganische Perowskite sind im Gegensatz zu den hybriden metallorganischen Perowskiten thermisch stabiler.

Durch Ko-Verdampfung von Cäsiumiodid und Bleiiodid lassen sich dünne Schichten aus CsPbI3 auch bei moderaten Temperaturen herstellen. Ein Cäsium-Überschuss führt zu stabilen Perowskit-Phasen.
Copyright: J. Marquez-Prieto/HZB
Weltweit forschen Teams mit Hochdruck an der Entwicklung von Perowskit-Solarzellen. Dabei liegt der Schwerpunkt auf so genannten metallorganischen Hybrid-Perowskiten, deren Kristallstruktur sich sowohl aus anorganischen Elementen wie Blei und Iod als auch aus einem organischen Molekül zusammensetzt.
Vollständig anorganische Perowskit-Halbleiter wie CsPbI3 besitzen die gleiche kristalline Architektur wie hybride Perowskite, beinhalten aber statt eines organischen Moleküls ein Alkali-Metall wie Cäsium. Dadurch sind sie deutlich stabiler als Hybrid-Perowskite, erfordern aber üblicherweise einen Herstellungs-Schritt bei sehr hoher Temperatur von mehreren Hunderten Grad Celsius. Aus diesem Grund lassen sich anorganische Perowskit-Halbleiter bisher nur schwer in Dünnschicht-Solarzellen integrieren, die hohe Temperaturen nicht vertragen. Nun ist es einem Team um Dr. Thomas Unold gelungen, anorganische Perowskit-Halbleiter bei moderaten Temperaturen herzustellen, sodass sie künftig auch in verschiedenen Dünnschicht-Zellen genutzt werden könnten.
Dafür entwarfen die Physiker ein innovatives Experiment, mit dem sie viele Materialkombinationen innerhalb einer einzigen Probe synthetisieren und analysieren konnten. Durch Ko-Verdampfung von Cäsiumiodid und Bleiiodid stellten sie dünne Schichten aus CsPbI3 her, wobei sie systematisch die Überschüsse der Elemente in der Atmosphäre variierten. Die Substrat-Temperatur lag dabei unter 60 Grad Celsius.
„Durch einen solchen kombinatorischen Forschungsansatz können optimale Herstellungsparameter für neue Materialsysteme viel schneller gefunden werden als in der herkömmlichen Herangehensweise, bei der für 100 Zusammensetzungen typischerweise 100 Proben hergestellt werden müssen“, erklärt Unold. Durch sorgfältige Analysen während der Synthese und der anschließenden Messungen der optoelektronischen Eigenschaften konnten sie ermitteln, wie sich die Zusammensetzung der Dünnschicht auf die Materialeigenschaften auswirkt.
Ihre Messungen zeigen, dass sowohl die strukturellen wie auch wichtige optoelektronische Materialeigenschaften empfindlich vom Verhältnis zwischen Cäsium und Blei abhängen. So ermöglicht ein Cäsium-Überschuss eine stabile Perowskit-Phase mit guter Beweglichkeit und Lebensdauer der Ladungsträger.
In Zusammenarbeit mit der Nachwuchsgruppe von Prof. Steve Albrecht am HZB wurden mithilfe dieser optimierten CsPbI3-Schichten Perowskit-Solarzellen mit einem Wirkungsgrad von mehr als 12 % und einer Stabilität von mehr als 1200 Stunden demonstriert. “Wir haben gezeigt, dass sich auch anorganische Perowskit-Absorber für den Einsatz in Dünnschicht-Solarzellen eignen könnten, wenn man sie entsprechend herstellen kann. Wir gehen gegenwärtig davon aus, dass sich solche Bauelemente noch sehr stark optimieren lassen“, sagt Unold.
Originalveröffentlichung
Pascal Becker, José A. Márquez, Justus Just, Amran Al-Ashouri, Charles Hages, Hannes Hempel, Marko Jošt, Steve Albrecht, Ronald Frahm and Thomas Unold; "Low temperature synthesis of stable CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation"; Advanced Energy Materials; 2019
Originalveröffentlichung
Pascal Becker, José A. Márquez, Justus Just, Amran Al-Ashouri, Charles Hages, Hannes Hempel, Marko Jošt, Steve Albrecht, Ronald Frahm and Thomas Unold; "Low temperature synthesis of stable CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation"; Advanced Energy Materials; 2019
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte
Umicore erweitert Produktionskapazität für Brennstoffzellenkatalysatoren

Motec GmbH - Büdingen, Deutschland
