Zwei chirale Katalysatoren arbeiten Hand in Hand
Chemiker entwickeln Syntheseverfahren, das den Zugang zu verschiedenen Stereoisomeren eines Moleküls ermöglicht
Die Stereoisomere eines Medikaments beispielsweise können unterschiedliche oder sogar gegensätzliche Wirkungen auf den Körper haben – weshalb es von entscheidender Bedeutung ist, bestimmte Stereoisomere eines pharmazeutischen Wirkstoffs herzustellen. Chemiker versuchen daher, synthetische Verfahren zu entwickeln, die möglichst schaltbar sind und selektiv das eine oder andere Stereoisomer aus einfachen und identischen Ausgangsmaterialien unter bestimmten Reaktionsbedingungen herstellen können. Ein Forscherteam um Prof. Dr. Frank Glorius von der Westfälischen Wilhelms-Universität Münster (WWU) hat jetzt ein neues Verfahren zur gezielten Synthese aller vier Stereoisomere von sogenannten α,β-disubstituierten γ-Butyrolactonen entwickelt.
γ-Butyrolactone sind weit verbreitete Verbindungen in Naturprodukten, die viele biologische Funktionen haben. Ein wichtiges Beispiel ist Pilocarpin, ein Medikament zur Behandlung des Glaukoms. Das neu entwickelte Syntheseverfahren basiert auf der Kombination von zwei chiralen Katalysatoren – einem Organokatalysator und einem Metallkatalysator, die jeweils unabhängig voneinander einen der beiden Reaktionspartner aktivieren. „Mir gefällt das Bild, dass diese beiden Katalysatoren Hand in Hand arbeiten“, betont Prof. Dr. Frank Glorius. Die Katalysatoren werden während der Reaktion nicht verbraucht oder verändert und arbeiten synchron, um das Endprodukt effizient herzustellen. Es enthält zwei sogenannte Stereozentren, also bestimmte Anordnungen der zentralen Atome innerhalb des Moleküls. Da jedes Stereozentrum zwei mögliche Orientierungen – nach oben oder unten – aufweisen kann, können in diesem Fall vier mögliche Produkte erzeugt werden.
Die Chemiker nutzen in ihrem Verfahren die verschiedenen Kombinationen der beiden chiralen Katalysatoren, um die Bildung von nur einem der vier möglichen Produkte zu kontrollieren, können aber auf jedes der Produkte zugreifen – eine Eigenschaft, die nur wenige chemische Prozesse aufweisen. „Unsere Methode rationalisiert die Synthese von chiralen α,β-disubstituierten γ-Butyrolactonen in einem einzigen Schritt, ausgehend von einfachen Vorläufern und unter Verwendung von zwei chiralen Katalysatoren. Es ist ein System, bei dem man im Grunde genommen wählen kann, welches Stereoisomer man herstellen möchte“, sagt Dr. Santanu Singha, einer der Erstautoren.
„Die Enantioselektivität ist perfekt, besser als 99 Prozent in fast allen Fällen“, betont auch Dr. Eloisa Serrano, eine weitere Hauptautorin. Da die γ-Butyrolacton-Produkte im Kern mehrerer Naturprodukte mit interessanten biologischen Aktivitäten stehen, erwarten die Autoren, dass ihre Methode für die Arzneimittelforschung relevant ist.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.