Vielversprechende Feststoff-Elektrolyte für leistungsstarke Lithium-Ionen Batterien

09.01.2020 - Deutschland

Leistungsfähige, langlebige Energiespeicher sind für viele Zukunftstechnologien von zentraler Bedeutung: Etwa für die Elektromobilität, für mobile Endgeräte wie Tablets oder Smartphones oder zur effizienten Nutzung regenerativer Energien. Dr. Daniel Mutter vom Fraunhofer IWM konnte klären, wie Feststoff-Elektrolyte aus Keramik chemisch zusammengesetzt sein müssen, um gute Leistung in Lithium-Ionen Batterien zu erbringen. Solche Feststoff-Elektrolyte sind umweltfreundlicher als herkömmliche Flüssig-Elektrolyte und könnten Lithium-Ionen Batterien deutlich leistungsfähiger und betriebssicherer machen.

© Fraunhofer-Institut für Werkstoffmechanik IWM

Hoffnungsträger für noch leistungsfähigere Lithium-Ionen-Batterien: Festkörper-Elektrolyt (hier LiTi2(PO4)3, Li-grün, Ti-blau, P-lila, O-rot); Darstellung der »Wanderungspfade« für Li-Ionen (Bänder)

»Die Überlegung, dass keramische Festkörper-Elektrolyte eine vielversprechende Alternative für herkömmliche Flüssig-Elektrolyte in Batterien und Akkumulatoren sein könnten, ist in der Materialwissenschaft nicht neu«, erklärt Dr. Daniel Mutter, Wissenschaftler der Gruppe Materialmodellierung am Fraunhofer-Institut für Werkstoffmechanik IWM. Im Vergleich zu herkömmlichen Flüssig-Elektrolyten sind Festkörper-Elektrolyte sicherer im laufenden Betrieb: Sie bergen eine deutlich geringere Explosionsgefahr und bei einer Beschädigung, beispielsweise durch einen Crash, tritt keine Säure aus, die bei Menschen Verätzungen und Vergiftungen hervorrufen kann.

Geeignete chemische Verbindungen zur Gestaltung von Festkörper-Elektrolyten entdeckt

Im Allgemeinen fällt die ionische Leitfähigkeit von Keramik-Materialien geringer aus als die von Flüssig-Elektrolyten. Eine hohe ionische Leitfähigkeit verspricht jedoch die Klasse der sogenannten NZP-Keramiken: Ihr struktureller Aufbau ermöglicht die Existenz von »Wanderpfaden«, auf denen sich Lithium-Ionen leicht fortbewegen können. Das macht sie zum interessanten Kandidat für hochleistungsfähige Festkörperelektrolyte für Lithium-Ionen Batterien.

Unklar war bisher allerdings, warum bestimmte Verbindungen leistungsfähiger sind als andere und welche tatsächlich besonders gute Leistung erbringen. Die Anforderungen an die Materialeigenschaften von Batterie-Elektrolyten sind beachtlich: Die ionische Leitfähigkeit soll hoch und die verwendeten chemischen Elemente sowohl ungiftig als auch reichhaltig in der Erdkruste vorhanden sein.

Dr. Mutter identifizierte nun mithilfe atomistischer Simulationen mehrere Kombinationen chemischer Elemente für NZP-Keramiken, die für diese Anforderungen besonders vielversprechend sind. »Mit dieser computerbasierten Forschung können wir gesicherte Aussagen zu den Eigenschaften und der Stabilität verschiedener chemischer Elementverbindungen machen, ohne diese tatsächlich chemisch synthetisieren zu müssen«, erklärt der Forscher. Der Vorteil: Die tatsächliche Synthese ist teuer und benötigt Ressourcen. Die Simulationen führte er am Großrechner des Steinbuch-Supercomputer-Centers am Karlsruher Institut für Technologie durch.

Kürzeres Laden bei längerem Betrieb

»Diese besonders vorteilhaften Keramik-Festkörper-Elektrolyte können wir unter Umständen mit sehr leistungsfähigen Lithium-Metall-Anoden kombinieren – das ist bei den heute gebräuchlichen flüssigen Elektrolyten nicht möglich, denn sie reagieren stark mit metallischem Lithium und beschädigen dadurch die Batterie«, erklärt Dr. Mutter. »Im nächsten Schritt könnten wir mit Partnern praktisch testen, ob unsere vorhergesagten Elektrolytmaterialien die Ionenleitfähigkeit wie erwartet deutlich steigern und daraus bestehende Batterien eine sehr viel höhere Energie- und Leistungsdichte erreichen«, sagt der Physiker. Das hieße konkret: Kürzere Ladedauer bei längerer Betriebszeit, was insbesondere für die Elektromobilität von Vorteil wäre. Zudem bedeutet diese Kombination weniger Gewicht, da Lithium-Metall-Anoden bei gleicher Kapazität deutlich leichter sind als die bisher verwendeten Graphit-Anoden.

Leichtere Batterien mit zahlreich in der Erde vorhandenen Elementen

Die chemischen Elemente, aus denen die Elektrolytmaterialien bestehen, an denen Dr. Mutter forscht, sind zahlreich in der Erdkruste in Europa vorhanden und verhältnismäßig leicht abbaubar. So wird vermieden, dass Elemente wie etwa Kobalt, das beispielsweise in Lithium-Ionen-Batterien von Smartphones zum Einsatz kommt und oftmals aus dem Kongo importiert wird, zur Herstellung benötigt werden.

Über die Vorhersage vielversprechender Materialzusammensetzungen hinaus trägt Dr. Mutter mit seiner Forschung zum besseren Verständnis der atomaren Vorgänge in NZP-Keramiken bei. Er fand heraus, dass die für die Lithium-Ionen-Wanderung nötige Migrationsenergie auf eine andere Weise von der Sauerstoffumgebung um den Ionenwanderungspfad abhängt als bisher vermutet. Identifizierte Struktur-Eigenschaftsbeziehungen ermöglichen deutlich fundiertere Vorhersagen über die Auswirkungen der elementaren Besetzungen auf das Strukturgerüst und die Ionenleitfähigkeit der NZP-Keramiken.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Battery Testing Services

Battery Testing Services von Battery Dynamics

Erfahren Sie mehr über die Leistungsfähigkeit und Lebensdauer Ihrer Batteriezellen in kürzerer Zeit

Profitieren Sie von moderner Messtechnik und einem erfahrenen Team

Messtechnik-Dienstleistungen
Batt-TDS

Batt-TDS von ystral

YSTRAL Batt-TDS Misch- und Dispergiermaschine

Boosten Sie Ihren Batterie-Slurry-Prozess

Dispergierer
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren