Wenn Ionen an ihrem Käfig rütteln
Wie die Untersuchung von Ionenschwingungen zu besseren Batterien führen kann
© MPI-P
Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene Ionen, die sich im Wasser frei bewegen können: Es entsteht eine Elektrolytlösung. Durch elektrische Spannungen lassen sich diese geladenen Teilchen innerhalb der Lösung transportieren und sorgen somit für einen elektrischen Strom. Dies stellt die Basis für die Technologie von Batterien oder die Energiespeicherung in lebenden Zellen dar.
Um Ströme innerhalb von Batterien zu vergrößern ist es notwendig, auch die Anzahl der gelösten Ionen zu erhöhen. In diesem Fall stoßen aber Ionen immer häufiger auf andere Ionen in der Flüssigkeit, was zu einer Erhöhung des elektrischen Widerstands führt.
Um höhere Ströme in Elektrolytlösungen erreichen zu können, haben nun Wissenschaflter des Max-Planck-Instituts für Polymerforschung um Dr. Johannes Hunger und Dr. Yuki Nagata (Arbeitskreis Prof. Dr. Mischa Bonn) Elektrolytlösungen sowohl experimentell als auch in Computersimulationen untersucht. In einer Kooperation mit Wissenschaftlern aus Berlin und Graz haben sie hierfür die mikroskopische Bewegung von Ionen experimentell untersucht. Sie konnten zeigen, dass die Ionen – bevor sie sich in der Flüssigkeit bewegen können – zunächst von den sie umgebenden Molekülen wie in einer Art Käfig festgehalten werden, und innerhalb dieses Käfigs hin- und herschwingen, ähnlich wie auf einer Schaukel. Diese ultraschnelle Bewegung, die zwischen 1000 Milliarden und 10000 Milliarden Mal pro Sekunde vonstatten geht, konnten Sie mit Hilfe von ultrakurzen Laserpulsen analysieren.
Sie konnten damit nachweisen, dass die maximale Auslenkung der Ionen – sozusagen die Länge der Kette der Schaukel – eine Aussage darüber erlaubt, wie hoch der später mögliche elektrische Strom ist. Diese experimentellen Erkenntnisse konnten sie auch mit Computersimulationen bestätigen. Somit konnten sie ein über 100 Jahre altes Rätsel lösen: Der Widerstand einer Elektrolytlösung hängt nämlich neben der Anzahl der Ionen auch von deren Größe bzw. Form ab. Die Wissenschaftler konnten nun zeigen, dass der Widerstand auf unterschiedliche Käfige und Käfigschwingungen zurückgeführt werden kann.
Solche molekularen Einblicke in die Bewegung von Ionen sind essentiell, um den Transport von Ladungen in Elektrolyten zu verstehen. Die Experimente zeigen, dass eine Elektrolytlösung umso besser leitet, je stärker die Ionen in ihrem Käfig schwingen: Je stärker die Ionen im Käfig schwingen umso stärker rütteln sie an ihrem Käfig und können somit leichter aus dem Käfig ausbrechen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!