Atom blitzschnell angetippt
Einzelne Moleküle nicht nur beobachten, sondern gezielt steuern: "Atomare Hand" berührt Atome schneller als eine billionstel Sekunde
© Brad Baxley (parttowhole.com)
Atome und Moleküle sind die Bestandteile praktisch aller Materie, die uns umgibt. Sie interagieren miteinander gemäß den Regeln der Quantenmechanik und bilden komplexe Systeme, die eine unendliche Vielfalt von Funktionen erfüllen. Um chemische Reaktionen, biologische Vorgänge einer Zelle oder neuartige Sonnenenergiegewinnung zu untersuchen, würden Wissenschaftler gerne einzelne Moleküle nicht nur beobachten, sondern diese sogar gezielt steuern.
Am intuitivsten lernen Menschen, wie sich Objekte entwickeln, wenn sie haptisch Einfluss nehmen können: etwas anstoßen, drücken, schubsen oder ziehen. Naturgemäß sind wir dabei an makroskopische Objekte gewöhnt, die sie durch Kraftausübung direkt berühren und bewegen können. In ähnlicher Weise interagieren Atome und Moleküle über Kräfte, aber diese Kräfte sind in mehrfacher Hinsicht extrem. Erstens treten die zwischen Atomen und Molekülen wirkenden Kräfte bei extrem kleinen Längen auf. Diese Objekte sind so klein, dass sogar eine spezielle Längenskala eingeführt wurde, um sie zu messen: 1 Ångström (1 Å = 0,000 000 000 1 m). Gleichzeitig zappeln und bewegen sich Atome und Moleküle unvorstellbar schnell; schneller als Pikosekunden (1 ps = 0,000 000 000 001 s). Um ein Molekül bei seiner Bewegung direkt zu beeinflussen, wird also ein Werkzeug zur Erzeugung ultraschneller Kräfte auf atomarer Ebene benötigt.
Vor mehr als 30 Jahren zeigten Eigler und Schweizer, dass man mit einem Rastertunnelmikroskop statische Kräfte auf einzelne Atome ausüben kann. In solch einem Mikroskop wird eine extrem scharfe Nadel verwendet, die Moleküle vorsichtig abtastet, ähnlich wie bei einem Plattenspieler. Ein Forschungsteam aus Regensburg und Zürich hat sich nun der Herausforderung gestellt, solch atomare Kräfte schnell genug zu machen, um Moleküle während ihrer Bewegung zu lenken und damit Reaktionen und Übergänge zu beeinflussen. Das Regensburger Team um Rupert Huber und Jascha Repp arbeitet mit einem weltweit einzigartigen ultraschnellen Mikroskop, welches Femtosekunden-Laserimpulse mit Rastertunnelmikroskopie kombiniert, die einzelne Moleküle sichtbar machen kann.
Weil Licht eine elektromagnetische Welle ist, kann seine oszillierende Trägerwelle als ultraschnelle Kraft wirken, wie das Team zeigte, schneller sogar als ein Schwingungszyklus des Lichtfeldes. „Wenn wir Lichtblitze auf die atomar scharfe Nadel des Mikroskops strahlen, können wir die belichtete Nadel als ultraschnelle, atomar scharfe "Hand" verwenden und damit einzelne Atome des Moleküls anstoßen", erklärt Dominik Peller, der Erstautor der neuen Studie.
Das Team beobachtete, dass die ultraschnellen atomaren Kräfte stark genug waren, um eine ultraschnelle Schwingung des Moleküls auszulösen. Diese Bewegung war so heftig, dass sie die Schaltwahrscheinlichkeit des Moleküls um bis zu 39% beeinflusste. Dominik Peller, zutiefst beeindruckt: „Wir konnten die Amplitude und die Richtung der Schwingung nach Belieben steuern und damit die Reaktionswahrscheinlichkeit des Moleküls auf der Femtosekundenskala modulieren".
Darüber hinaus stellte sich heraus, dass nur dann eine Schwingungsbewegung ausgelöst wird, wenn die "atomare Hand" ultraschnelle Kräfte auf ganz bestimmte Bereiche des Moleküls ausübt. Der Vergleich mit einer quantenmechanischen Berechnung von Nikolaj Moll in Zürich offenbarte den Grund dafür: Das Molekül hakt sich über Schlüsselatome in die Oberfläche ein. Nur wenn die Wissenschaftler ultraschnelle Kräfte auf diese speziellen Atome ausüben, können sie die Schwingung des Moleküls gezielt steuern.
Diese Entdeckung ermöglicht endlich die Kontrolle über molekulare Reaktionen auf unmittelbarste Weise. Man verspricht sich, durch ultraschnelle atomare Kräfte Schlüsselprozesse in Chemie und Biologie zu verstehen und zu steuern und damit zukünftige Technologien auf der Basis einzelner Moleküle zu inspirieren. So sollen die Geheimnisse des ultraschnellen Mikrokosmos nicht nur beobachtet, sondern mit bisher unerreichter Präzision kontrolliert und nutzbar gemacht werden.