Katalysatormaterial aus dem Laserlabor
Industrierelevanz eindrücklich belegt
© UDE/CENIDE
Abgase aus dem Dieselmotor laufen in der Regel durch einen Katalysator, der aus Platin- und Palladiumpartikeln auf einem Aluminiumoxidträger besteht. Die Partikel – kleiner als 10 Nanometer im Durchmesser – werden bisher überwiegend nasschemisch hergestellt, d.h. in einem mehrschrittigen Verfahren, das für jede Zusammensetzung neu optimiert werden muss. Tests mit neuen Materialien sind daher zeit- und kostenaufwendig.
Die „Laserablation“ ermöglicht es hingegen, hochreine Nanopartikel in einem Schritt aus einem Feststoff zu erzeugen. Ein Laser verdampft dabei mit ultrakurzen Pulsen Material von der Oberfläche eines Plättchens, das aus dem gewünschten Rohstoff besteht und in einer Flüssigkeit liegt. Die Fragmente finden sich anschließend zu Nanopartikeln zusammen – und fertig.
Der ursprüngliche Nachteil der Methode: Bisher war die Ausbeute der gewünschten Partikelgröße begrenzt. Aber Dr. Sven Reichenberger aus der Technischen Chemie I und sein Team haben eine Lösung gefunden: „Wir haben den Fokuspunkt des Lasers etwas oberhalb des Platin-Palladium-Plättchens in die Lösung gesetzt.“ Mehr als ein Gramm pro Stunde lässt sich so gezielt in der gewünschten Größe herstellen. Damit haben die Wissenschaftler, die im NanoEnergieTechnikZentrum (NETZ) arbeiten, die entscheidende Grenze überschritten, ab der die Lasermethode durch die geringen laufenden Kosten wirtschaftlicher ist als die nasschemische. Das Fachmagazin „Nanomaterials“ berichtet darüber in seiner aktuellen Ausgabe.
Bessere Performance schon bei niedrigeren Temperaturen
Industriepartner Umicore hat die so entstandenen Partikel unter realistischen Bedingungen getestet: Schon bei niedrigen Temperaturen zeigt der Katalysator eine wesentlich höhere Aktivität als das klassische Produkt. Zudem setzt er Kohlenstoffmonoxid gleich gut, Stickoxide sogar besser in ökologisch unbedenkliche Produkte um.
„Das war unser Meilenstein, um die industrielle Relevanz der Methode zu beweisen“, so Reichenberger. „Jetzt werden wir weitere Materialien testen.“
Originalveröffentlichung
S. Dittrich, S. Kohsakowski, B. Wittek, C. Hengst, B. Gökce, S. Barcikowski, S. Reichenberger; „Increasing the Size-Selectivity in Laser-Based g/h Liquid Flow Synthesis of Pt and PtPd Nanoparticles for CO and NO Oxidation in Industrial Automotive Exhaust Gas Treatment Benchmarking“; Nanomaterials; 2020, 10(8), 1582
Meistgelesene News
Originalveröffentlichung
S. Dittrich, S. Kohsakowski, B. Wittek, C. Hengst, B. Gökce, S. Barcikowski, S. Reichenberger; „Increasing the Size-Selectivity in Laser-Based g/h Liquid Flow Synthesis of Pt and PtPd Nanoparticles for CO and NO Oxidation in Industrial Automotive Exhaust Gas Treatment Benchmarking“; Nanomaterials; 2020, 10(8), 1582
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung
DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.