Revolutionierung wiederaufladbarer Natrium-Ionen-Batterien mit "dotierten" Kohlenstoffanoden
Dotierung von Kohlenstoff-Anodenmaterial mit verschiedenen Atomen erhöht die Leistung von Natrium-Ionen-Batterien
Korea Maritime and Ocean University
Aus diesem Grund machten sich Forscher der Korea Maritime and Ocean University, Korea, auf die Suche nach einem geeigneten Nicht-Graphit-Anodenmaterial für SIBs. Dr. Jun Kang, der leitende Wissenschaftler, sagt: "Da SIBs eine geringe Leistung haben - nur ein Zehntel der Kapazität einer Lithium-Ionen-Batterie - ist es entscheidend, eine effiziente Anode zu finden, die die niedrigen Kosten und die Stabilität von Graphit beibehält."
In ihrer neuesten Studie, die im Journal of Power Sourcesveröffentlicht wurde, berichten die Wissenschaftler nun über die folgenden Strategien, um die Beschränkungen von kohlenstoffbasierten Anodenmaterialien für SIBs zu überwinden: (1) Verwendung einer hierarchischen porösen Struktur, die in der Lage ist, einen schnellen Na+-Transport von der Bulk-Zone des Elektrolyten zur Grenzfläche des aktiven Materials zu fördern; (2) Beibehaltung großer spezifischer Oberflächenbereiche, in denen Na+ zur Grenzfläche wandert, die im aktiven Material leicht zugänglich ist; (3) Beibehaltung von Oberflächendefekten und Porenstrukturen, die eine Kointerkalation von der Oberfläche in das Innere ermöglichen; (4) Beibehaltung von Nanostrukturen in Na+, die aus Defekten und Poren in das aktive Material eingebracht werden und kurze Diffusionswege haben können; und (5) Erhöhung der Anzahl aktiver Stellen durch extrinsische Defekte, die aus diesen Elementen durch Heteroelementdotierung resultieren. Diese Strategien führten dazu, dass die elektrochemische Leistung der Batterie deutlich verbessert wurde und sogar die von aktuellen Lithium-Ionen-Batterien übertraf!
In zwei ihrer früheren Studien testeten sie diese Methode erfolgreich mit Phosphor und Schwefel, die jeweils auf den Titelseiten von Carbon und ACS Applied Materials & Interfaces vorgestellt wurden.
Dr. Kang ist optimistisch, was die verschiedenen potenziellen Anwendungen ihrer Technologie angeht, z. B. in elektrisch angetriebenen Schiffen und anderen Fahrzeugen, Drohnen und sogar Hochleistungs-CPUs. "Diese fünf Faktoren ermöglichen eine gute Kapazitätserhaltung, eine reversible Kapazität, eine ultrahohe Zyklenstabilität, eine hohe anfängliche coulombische Effizienz (80 %) und eine bemerkenswerte Ratenfähigkeit. Das bedeutet, dass sie auch bei intensivem Batteriegebrauch lange Zeit genutzt werden können", erklärt er.
In Anbetracht der Vorteile von Natrium gegenüber Lithium haben diese Erkenntnisse sicherlich wichtige Implikationen für die Entwicklung nachhaltiger, kostengünstiger und leistungsstarker Batterien und können uns der Realisierung einer energieeffizienten Zukunft einen Schritt näher bringen.
Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.