Perowskit-Schichten genau beleuchtet

Effiziente Materialien für Solarzellen der Zukunft – Neues Modell zur Bestimmung der Photolumineszenz-Quantenausbeute

16.03.2021 - Deutschland

Perowskit-Halbleiter gelten als vielversprechende Materialien für Solarzellen der nächsten Generation. Wie gut geeignet ein Halbleiter für die Anwendung in der Photovoltaik ist, lässt sich unter anderem an der sogenannten Photolumineszenz-Quantenausbeute erkennen. Forschende des Karlsruher Instituts für Technologie (KIT) haben ein neues Modell entwickelt, mit dem sich die Photolumineszenz-Quantenausbeute von Perowskit-Schichten erstmals exakt bestimmen lässt.

Markus Breig, KIT

Perowskit-Solarzellen haben beim Wirkungsgrad gegenüber Silzium-Solarzellen deutlich aufgeholt – einige ihrer Eigenschaften sind aber noch nicht vollständig verstanden.

Photovoltaik trägt wesentlich zu einer nachhaltigen Energieversorgung bei. Entscheidend für den Wirkungsgrad von Solarzellen, die Lichtenergie direkt in elektrische Energie umwandeln, ist das eingesetzte Material. Metall-Halid-Perowskite gelten als besonders vielversprechende Materialien für Solarzellen der nächsten Generation. Mit diesen Halbleitern, die ihren Namen der speziellen Perowskit-Kristallstruktur verdanken, ist in den vergangenen Jahren eine deutliche Effizienzsteigerung gelungen: Perowskit-Solarzellen haben inzwischen einen Wirkungsgrad von bis zu 25,5 Prozent erreicht – nicht mehr weit entfernt von dem der marktdominierenden Silizium-Solarzellen. Zudem sind die für Perowskit-Solarzellen benötigten Ausgangsmaterialien reichlich vorhanden, die Solarzellen lassen sich einfach und günstig herstellen und vielseitig einsetzen. Der bei Perowskit-Solarzellen theoretisch erreichbare Wirkungsgrad liegt bei ca. 30,5 Prozent.

Um diesem Wirkungsgrad nahezukommen, muss die optoelektronische Qualität der Perowskit-Halbleiter weiter steigen. Grundsätzlich gilt, dass für die Photovoltaik geeignete Materialien Licht nicht nur absorbieren, sondern auch effizient wieder emittieren sollen – ein als Photolumineszenz bezeichneter Prozess. Die zugehörige Messgröße, genannt Photolumineszenz-Quantenausbeute, ist damit hervorragend geeignet, die Qualität der Perowskit-Halbleiter zu bestimmen. Forschende am Institut für Mikrostrukturtechnik (IMT) und am Lichttechnischen Institut (LTI) des KIT haben nun gemeinsam mit Wissenschaftlern des Centre for Advanced Materials (CAM) an der Universität Heidelberg sowie der Technischen Universität Dresden ein neues Modell entwickelt, mit dem sich die Photolumineszenz-Quantenausbeute von Perowskit-Schichten erstmals zuverlässig und exakt bestimmen lässt.

Materialien bergen mehr Optimierungspotenzial als angenommen

„Unser Modell erlaubt, die Photolumineszenz-Quantenausbeute unter Sonneneinstrahlungsbedingungen exakter als bisher zu ermitteln“, erklärt Dr. Paul Faßl vom IMT des KIT. „Dabei kommt es auf das Photonen-Recycling an, das heißt auf den Anteil der vom Perowskit emittierten Photonen, der innerhalb der dünnen Schichten reabsorbiert und wieder reemittiert wird.“ Die Forschenden wandten ihr Modell auf Methylammoniumbleitriiodid (CH3NH3PbI3) an, einem der Perowskite mit der höchsten Photolumineszenz-Quantenausbeute. Diese wurde bisher auf rund 90 Prozent geschätzt, beträgt aber nach den Modellberechnungen ca. 78 Prozent. Wie die Wissenschaftler erläutern, berücksichtigten die bisherigen Schätzungen den Effekt von Lichtstreuung nicht angemessen und unterschätzten daher die Wahrscheinlichkeit, dass Photonen – die Quanten der Lichtenergie – aus der Schicht entweichen, bevor sie reabsorbiert werden. „Unsere Ergebnisse zeigen, dass das Potenzial für die Optimierung dieser Materialien deutlich höher ist als bisher angenommen“, sagt Dr. Ulrich W. Paetzold, Leiter der Gruppe Advanced Optics and Materials for Next Generation Photovoltaics am IMT des KIT. Das Forschungsteam stellt eine Open-Source-Anwendung bereit, mit der sich die Photolumineszenz-Quantenausbeute verschiedener Perowskit-Materialien anhand ihres Modells berechnen lässt.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?