Große Sprünge dank kleiner Sensoren
Wichtige, bislang aber nicht zugängliche, Moleküle über NMR-Spektroskopie analysieren
HHU / Dr. Manuel Etzkorn
Um das Leben auf molekularer Ebene zu verstehen, müssen die zentralen Bausteine wie zum Beispiel Proteine in einer möglichst natürlichen Form und Umgebung untersucht werden können. Hierzu bietet die Kernmagnetische-Resonanzspektroskopie (kurz NMR für „Nuclear Magnetic Resonance“) einzigartige Möglichkeiten.
Besonders geeignete Sensoren für diese Methode sind sogenannte Methylgruppen innerhalb der Proteine; diese bestehen aus einem Kohlenstoff- und drei Wasserstoffatomen. Um das Signal dieser Sensoren ausreichend zu verstärken, müssen große Teile des restlichen Proteins mittels aufwendiger Verfahren mit Deuteriumatomen angereichert werden. Deuterium ist ein Wasserstoffisotop, in dessen Atomkern sich neben einem Proton noch ein Neutron befindet. Eine solche Anreicherung war jedoch bislang nur mittels spezieller Herstellungsplattformen möglich.
Systeme, welche sich nicht durch diese Plattformen herstellen lassen, konnten daher bisher oft gar nicht oder nur sehr eingeschränkt mit der NMR-Spektroskopie untersucht werden. Insbesondere zählt hierzu eine ganze Reihe von therapeutisch besonders wichtigen Systemen, wie Antikörper oder die Klasse der sogenannten „G-Protein gekoppelten Rezeptoren“, auf welche ein sehr großer Teil moderner Medikamente einwirkt.
Ein Forschungsteam der HHU um Dr. Manuel Etzkorn vom Institut für Physikalische Biologie und vom Biomolekularen NMR-Zentrum (welches gemeinsam von der HHU und dem Forschungszentrum Jülich betrieben wird) hat zusammen mit Kollegen der Universität Sofia, der Harvard Medical School und dem Dana Faber Cancer Institut in Boston nun eine neue Methode entwickelt, mit der die benötigten Eigenschaften der Sensoren in allen gängigen Herstellungsplattformen eingebaut werden können. Das Syntheseverfahren ist erheblich einfacher und über 20-fach kostengünstiger als bisherige Ansätze, um Methylgruppen-Sensoren einzubauen, und es gelingt auch in bislang unzugänglichen Systemen.
Die Fachzeitschrift Angewandte Chemie hat die in der aktuellen Ausgabe vorgestellte Forschungsarbeit zur Titelgeschichte gemacht. Dies unterstreicht deren besondere Bedeutung für die Verbesserung biophysikalischer Grundlagenforschung sowie die daraus resultierende Entwicklung neuartiger Medikamente.
Dr. Etzkorn betont: „Die neue Methode wird es uns und anderen ermöglichen die Bausteine des Lebens in bislang ungeahnter Detailtiefe und in möglichst natürlichen Zuständen zu untersuchen.“
Originalveröffentlichung
A. Dubey, N. Stoyanov, T. Viennet, S. Chhabra, S. Elter, J. Borggräfe, A. Viegas, R. Nowak, N. Burdzhiev, O. Petrov, E. Fischer, M. Etzkorn, V. Gelev, H. Arthanari; "Local deuteration enables NMR observation of methyl groups in proteins from eukaryotic and cell-free expression systems"; Angew. Chem. Int. Ed.; 2021
Meistgelesene News
Originalveröffentlichung
A. Dubey, N. Stoyanov, T. Viennet, S. Chhabra, S. Elter, J. Borggräfe, A. Viegas, R. Nowak, N. Burdzhiev, O. Petrov, E. Fischer, M. Etzkorn, V. Gelev, H. Arthanari; "Local deuteration enables NMR observation of methyl groups in proteins from eukaryotic and cell-free expression systems"; Angew. Chem. Int. Ed.; 2021
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
AZURA Purifier + LH 2.1 von KNAUER
Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz
Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.