Aktive Platin-Spezies
Katalytische Hoch-Temperatur-Oxidationen: Einzelnes Atom oder Metall-Cluster?
© Wiley-VCH
Einzelne Metallatome und „Häufchen“ aus wenigen Metallatomen (Cluster) zeigen interessante katalytische Eigenschaften, die durch die genaue Art der aktiven Metall-Spezies bestimmt werden. Üblicherweise werden sie feinst verteilt auf einen Träger aufgebracht, z.B. Zeolithe, poröse silikatische Gerüststrukturen, die ebenfalls eine Rolle spielen. Bereits kleinste Veränderungen der aktiven Zentren können die Leistung eines Katalysators drastisch verringern. So neigen Edelmetalle wie Platin unter harschen Bedingungen zu einer dauerhaften Inaktivierung durch Sintern.
Welche Platin-Spezies bei Hochtemperatur-Oxidationen eine Rolle spielen, ist jedoch schwer fassbar, da sich signifikante Population nicht ohne weiteres erhalten lassen ohne die Beteiligung ihres Trägers während der Katalyse. Das Team um Pedro Serna (ExxonMobil Research and Engineering Co., New Jersey, USA) sowie Manuel Moliner und Avelino Corma (Universitat Politècnica de València, Spanien) untersuchte jetzt das Verhalten einzelner Platinatome und kleiner Platincluster auf speziellen CHA-Zeolithen, einem nicht-reduzierbaren Träger, der diese Spezies gut stabilisieren kann.
Zunächst wurde die Spaltung von molekularem Suaerstoff (O2) durch zwei Sorten isotopenreiner Sauerstoffmoleküle 16O2 und 18O2 untersucht. Je aktiver der Katalysator, desto mehr gemischte Moleküle 16O18O entstehen bei der Rekombination der dissoziierten Atome. Wie sich zeigte, sind Platin-Cluster unterhalb von einem Nanometer hierbei wesentlich aktiver als einzelne Atome und größere Cluster. Bei moderaten Temperaturen (200 °C) zerfallen die winzigen Cluster mit der Zeit jedoch in einzelne Platinatome, die katalytische Aktivität für die Sauerstoff-Spaltung endet.
Bei der Oxidation von Alkanen z.B. Methan bei höheren Temperaturen konnte das Team die katalytische Verbrennung dagegen stabilen einzelnen Platinatomen zuordnen. Sie entstehen in situ im Sauerstoff-Strom aus anfänglich vorhandenen Clustern, wie anhand von Röntgenabsorptions-Spektroskopie sowie Elektronenmikroskopie belegt wurde. Entscheidender Schritt für diese Reaktion ist nicht die Spaltung von O2 sondern von C-H-Bindungen, die weniger empfindlich für Änderungen der Struktur der aktiven Zentren ist.
Bei der Oxidation von CO ist die Katalyse dagegen von Platin-Clustern dominiert. Einzelne Platinatome können im CO-Strom nicht stabilisiert werden und spielen daher keine Rolle. Im Vergleich zu Trägern aus Aluminiumoxid bewirkt der CHA-Zeolith in Anwesenheit von CO eine höhere Aktivität und Stabilität der Platin-Cluster.
Die große Stabilität einzelner Platinatome für die Methan-Verbrennung und kleiner Platin-Cluster für die CO-Oxidation, die auch nach einer Regenerierung oder Behandlung mit heißem Dampf erhalten bleibt, eröffnet neue Möglichkeiten für Systeme aus Platin und silikatischen Zeolithen als effiziente und robuste heterogene Katalysatoren in einer Reihe von Hochtemperatur-Oxidations-Szenarien.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.