Wie Sauerstoffverlust die Spannung einer Lithium-Ionen-Batterie aufhebt

Die Messung des Prozesses in noch nie dagewesener Detailtiefe gibt Hinweise darauf, wie das Problem minimiert und die Batterieleistung geschützt werden kann

16.06.2021 - USA

Wenn Lithium-Ionen während des Ladens und Entladens in eine Batterieelektrode hinein- und herausfließen, entweicht ein winziges bisschen Sauerstoff und die Spannung der Batterie - ein Maß dafür, wie viel Energie sie liefert - nimmt ein ebenso winziges bisschen ab. Diese Verluste summieren sich mit der Zeit und können schließlich die Energiespeicherkapazität der Batterie um 10-15 % verringern.

Greg Stewart/SLAC National Accelerator Laboratory

Wissenschaftler am SLAC und in Stanford haben detailliert gemessen, wie Sauerstoff aus den Milliarden von Nanopartikeln, aus denen die Elektroden von Lithium-Ionen-Batterien bestehen, entweicht und mit der Zeit die Spannung und Energieeffizienz der Batterie verschlechtert. In dieser Abbildung sind die roten Kugelpaare entweichende Sauerstoffatome und die violetten Kugeln sind Metallionen. Dieses neue Verständnis könnte zu neuen Wegen führen, um das Problem zu minimieren und die Batterieleistung zu verbessern.

Jetzt haben Forscher diesen superlangsamen Prozess mit noch nie dagewesenen Details gemessen und gezeigt, wie die Löcher oder Leerstellen, die von den entweichenden Sauerstoffatomen hinterlassen werden, die Struktur und Chemie der Elektrode verändern und allmählich die Energiespeicherkapazität verringern.

Die Ergebnisse widersprechen einigen Annahmen, die Wissenschaftler über diesen Prozess gemacht hatten, und könnten neue Wege aufzeigen, wie Elektroden konstruiert werden können, um ihn zu verhindern.

Das Forscherteam vom SLAC National Accelerator Laboratory des Energieministeriums und der Stanford University beschreibt seine Arbeit in Nature Energy.

"Wir waren in der Lage, einen sehr winzigen Grad an Sauerstoff zu messen, der so langsam über Hunderte von Zyklen herausrieselt", sagte Peter Csernica, ein Stanford-Doktorand, der mit Associate Professor Will Chueh an den Experimenten arbeitete. "Die Tatsache, dass es so langsam ist, ist es auch, was es schwer zu entdecken macht."

Ein Schaukelstuhl in zwei Richtungen

Lithium-Ionen-Batterien funktionieren wie ein Schaukelstuhl, indem sie Lithium-Ionen zwischen zwei Elektroden, die Ladung vorübergehend speichern, hin und her bewegen. Im Idealfall sind diese Ionen die einzigen, die sich zwischen den Milliarden von Nanopartikeln, aus denen jede Elektrode besteht, hin und her bewegen. Aber Forscher wissen schon seit einiger Zeit, dass Sauerstoffatome aus den Partikeln austreten, während sich das Lithium hin und her bewegt. Die Details waren bisher schwer zu bestimmen, weil die Signale dieser Lecks zu klein sind, um sie direkt zu messen.

"Die Gesamtmenge des Sauerstoffaustritts über 500 Zyklen des Auf- und Entladens der Batterie beträgt 6 %", so Csernica. "Das ist keine so kleine Zahl, aber wenn man versucht, die Menge an Sauerstoff zu messen, die bei jedem Zyklus austritt, ist es etwa ein Hundertstel eines Prozents."

In dieser Studie maßen die Forscher die Leckage stattdessen indirekt, indem sie untersuchten, wie der Sauerstoffverlust die Chemie und Struktur der Partikel verändert. Sie verfolgten den Prozess auf verschiedenen Längenskalen - von den winzigsten Nanopartikeln über Klumpen von Nanopartikeln bis hin zur gesamten Dicke einer Elektrode.

Weil es für Sauerstoffatome so schwierig ist, sich bei den Temperaturen, bei denen Batterien arbeiten, in festen Materialien zu bewegen, wurde bisher angenommen, dass die Sauerstofflecks nur von den Oberflächen der Nanopartikel ausgehen, so Chueh, obwohl dies umstritten war.

Um einen genaueren Blick auf die Vorgänge zu werfen, hat das Forschungsteam die Batterien für verschiedene Zeiträume zykliert, sie auseinander genommen und die Elektroden-Nanopartikel für eine detaillierte Untersuchung an der Advanced Light Source des Lawrence Berkeley National Laboratory in Scheiben geschnitten. Dort scannte ein spezielles Röntgenmikroskop über die Proben, machte hochauflösende Bilder und untersuchte die chemische Zusammensetzung jedes winzigen Punktes. Diese Informationen wurden mit einer Rechentechnik namens Ptychographie kombiniert, um Details im Nanobereich, gemessen in Milliardstel Metern, zu enthüllen.

In der Zwischenzeit schoss das Team an der Stanford Synchrotron Light Source des SLAC Röntgenstrahlen durch ganze Elektroden, um zu bestätigen, dass das, was sie auf der Nanoebene sahen, auch in einem viel größeren Maßstab zutraf.

Ein Ausbruch, dann ein Rinnsal

Beim Vergleich der experimentellen Ergebnisse mit Computermodellen, wie der Sauerstoffverlust ablaufen könnte, kam das Team zu dem Schluss, dass ein anfänglicher Ausbruch von Sauerstoff von den Oberflächen der Partikel entweicht, gefolgt von einem sehr langsamen Rinnsal aus dem Inneren. Wo Nanopartikel zu größeren Klumpen zusammenkamen, verloren diejenigen in der Nähe des Zentrums des Klumpens weniger Sauerstoff als diejenigen in der Nähe der Oberfläche.

Eine weitere wichtige Frage, so Chueh, ist, wie sich der Verlust der Sauerstoffatome auf das Material auswirkt, das sie zurückgelassen haben. "Das ist tatsächlich ein großes Rätsel", sagte er. "Stellen Sie sich vor, die Atome in den Nanopartikeln sind wie eng gepackte Kugeln. Wenn man immer wieder Sauerstoffatome herausnimmt, könnte das ganze Ding zusammenbrechen und sich verdichten, weil die Struktur gerne dicht gepackt bleibt."

Da dieser Aspekt der Elektrodenstruktur nicht direkt abgebildet werden konnte, verglichen die Wissenschaftler wiederum andere Arten von experimentellen Beobachtungen mit Computermodellen verschiedener Sauerstoffverlustszenarien. Die Ergebnisse zeigten, dass die Leerstellen tatsächlich bestehen bleiben - das Material bricht nicht zusammen und verdichtet sich - und legen nahe, wie sie zum allmählichen Verfall der Batterie beitragen.

"Wenn der Sauerstoff weggeht, wandern umliegende Mangan-, Nickel- und Kobaltatome. Alle Atome tanzen aus ihren idealen Positionen", so Chueh. "Diese Neuanordnung der Metallionen, zusammen mit den chemischen Veränderungen, die durch den fehlenden Sauerstoff verursacht werden, verschlechtert mit der Zeit die Spannung und die Effizienz der Batterie. Man kennt Aspekte dieses Phänomens schon seit langem, aber der Mechanismus war unklar."

Jetzt haben wir ein wissenschaftliches Verständnis" dieser wichtigen Ursache für die Degradation von Batterien, was zu neuen Möglichkeiten führen könnte, den Sauerstoffverlust und seine schädlichen Auswirkungen zu verringern, sagte er.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Battery Testing Services

Battery Testing Services von Battery Dynamics

Erfahren Sie mehr über die Leistungsfähigkeit und Lebensdauer Ihrer Batteriezellen in kürzerer Zeit

Profitieren Sie von moderner Messtechnik und einem erfahrenen Team

Messtechnik-Dienstleistungen
Batt-TDS

Batt-TDS von ystral

YSTRAL Batt-TDS Misch- und Dispergiermaschine

Boosten Sie Ihren Batterie-Slurry-Prozess

Dispergierer
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

35+ Produkte
150+ Unternehmen
40+ White Paper
25+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

35+ Produkte
150+ Unternehmen
40+ White Paper
25+ Broschüren