"Atomarer Walzer" zur Atom-Manipulation durch Modellierung entdeckt
© Toma Susi & Alexander Markevich / University of Vienna, Andrew R. Lupini
Die Konstruktion von Materialien auf atomarer Ebene ist ein ultimatives Ziel der Nanotechnologie. Bekannte Beispiele für die Manipulation von Atomen mithilfe der Rastertunnelmikroskopie reichen von der Konstruktion von Quantenkorallen bis hin zu wiederbeschreibbaren atomaren Speichern. Während etablierte Rastersonden-Techniken leistungsfähige Werkzeuge für die Manipulation von Oberflächenatomen sind, können sie das Innere des Materials nicht erreichen, da der Kontakt der Probe mit einer physischen Spitze sowie Betrieb und Lagerung bei kryogenen Temperaturen erforderlich sind.
Jüngste Fortschritte in der Rastertransmissionselektronenmikroskopie (STEM) haben das Interesse an der Verwendung eines Elektronenstrahls zur Atommanipulation geweckt. Wien hat sich zu einem der weltweit führenden Zentren dieser Forschung entwickelt. "Die einzigartige Stärke dieser Technik ist die Fähigkeit, nicht nur Oberflächenatome, sondern auch Fremdatome innerhalb dünner Volumenkristalle zu erreichen. Dies ist nicht nur eine theoretische Möglichkeit: Der erste Grundsatzbeweis der möglichen Manipulation von Wismut-Dotieratomen in Silizium wurde kürzlich von unseren US-Kolleg*innen erbracht", erklärt Toma Susi von der Universität Wien.
Die neue gemeinsame Studie beinhaltet eine systematische Modellierung der Elektronenstrahl-Manipulation von Donorelementen der Gruppe V in Silizium. Entscheidend ist, dass das Wiener Team einen neuartigen Mechanismus – als indirekter Austausch bezeichnet – aufdeckte, bei dem nicht ein, sondern zwei benachbarte Siliziumatome an einem koordinierten atomaren "Walzer" beteiligt sind. Dieser erklärt, wie Elektronenstöße diese Dotieratome innerhalb des Siliziumgitters bewegen können. "Der Mechanismus funktioniert allerdings nur bei den beiden schwereren Donorelementen Wismut und Antimon, ist aber zerstörungsfrei, da keine Atome aus dem Gitter entfernt werden müssen", ergänzt Alexander Markevich.
Weiterhin konnte das Team erstmals experimentell die Manipulation von Antimon-Fremdatomen in Silizium mittels STEM demonstrieren. Die präzise Positionierung von Dotieratomen innerhalb von Kristallgittern könnte neuartige Anwendungen in Bereichen wie Festkörpersensorik und Quantencomputern ermöglichen. Dies könnte spannende Auswirkungen haben, wie Susi abschließend feststellt: "Erst kürzlich wurden Antimon-Dotieratome in Silizium als vielversprechende Kandidaten für Festkörper-Kernspin-Qubits vorgeschlagen und unsere Arbeit könnte einen Weg für deren deterministische Herstellung eröffnen."
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Alexander Markevich, Bethany M. Hudak, Jacob Madsen, Jiaming Song, Paul C. Snijders, Andrew R. Lupini, Toma Susi; "Mechanism of Electron-Beam Manipulation of Single-Dopant Atoms in Silicon"; Journal of Physical Chemistry C 125, 29, 16041–16048 (2021).
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.