Harter Einzelmolekülmagnet
Vierkerniger Metallkomplex aus den seltenen Erden mit Riesen-Spin
(c) Wiley-VCH
Ein Bit auf jedem Molekül könnte die Informationsdichte in Computern um das Vieltausendfache steigern. Ob ein Molekül zum magnetischen Speicher werden kann, hängt von der Magnetisierbarkeit der Elektronen und dem Widerstand gegen Entmagnetisierung, die magnetische Härte, ab. Physiker und Chemiker konstruieren solche molekularen Magnete aus Metallionen, die über molekulare Brücken magnetisch miteinander koppeln.
Koppelnde Brücken müssen allerdings verschiedene Voraussetzungen erfüllen. Eine radikalische Distickstoffbrücke – zwei Stickstoffatome mit zusätzlichem Elektron, was den Distickstoff zum Radikal macht – brachte zwar für Metallionen aus der Reihe der seltenen Erden hervorragende Ergebnisse, aber sie sei schwierig zu kontrollieren und biete keinen Raum für Modifikationen, schreiben Muralee Murugesu von der Universität Ottawa in Kanada und sein Team in ihrer Studie. Um mehr Gestaltungsfreiheit zu haben, vergrößerten sie die Brücke durch einen „doppelten Distickstoff“. Der hierfür noch unerforschte Tetrazin-Ligand enthält vier, anstelle von zwei Stickstoffatomen.
Für die Synthese des molekularen Magneten brachten sie den neuen Tetrazin-Liganden mit Ionen von Seltenerdmetallen – Dysprosium und Gadolinium – zusammen und versetzten die Lösung mit einem starken Reduktionsmittel, um die radikalischen Tetrazin-Brücken zu formen. Sie gewannen den neuen Magneten in Form von dunkelroten prismatischen Kristallen.
Die molekulare Einheit in diesem Kristall beschrieben die Forscher:innen als einen vierkernigen Komplex, bei dem vier ligandengestützte Metallionen über vier Tetrazinylradikalen miteinander verbrückt waren. Seine wichtigste Eigenschaft war jedoch seine außergewöhnliche magnetische Härte oder Koerzitivität – das heißt, der Komplex bildete einen beständigen Einzelmolekülmagneten, der besonders schwer zu entmagnetisieren war.
Diese hohe Koerzivität wird durch die gute Kopplung über die radikalische Tetrazin-Einheit ermöglicht, schreiben die Wissenschaftler. Die vier Metallzentren koppelten miteinander zu einer molekularen Einheit mit Riesen-Spin. Nur bei dem Vorgängermodell mit der Distickstoffbrücke sei diese Kopplung noch ausgeprägter. Allerdings sei die Brücke über das Tetrazin-Radikal vielseitiger und das Molekül insgesamt stabiler.
Auch andere mehrkernige Komplexe könnten auf diese Art mit Riesen-Spin aufgebaut werden, schreiben die Autoren. Das biete viel mehr Möglichkeiten, um leistungsfähige Einzelmolekülmagnete zu entwickeln.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.