Neuartiger Quanteneffekt in hauchdünnem Kohlenstoff entdeckt
Forscherteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Fabian Geisenhof/Jakob Lenz
Fabian Geisenhof/Jakob Lenz
Das Team aus Universität Göttingen, Ludwig-Maximilians-Universität München und der Universität von Texas (Dallas) verwendete dabei zweilagiges Graphen in seiner natürlichen Anordnung. Die Graphen-Flocken werden dann mit einfachen Mikrostrukturverfahren kontaktiert und freischwebend gemacht, wodurch die Flocke als Brücke zwischen zwei Metallkontakten stehen bleibt. Die extrem sauberen Graphen-Doppellagen zeigen bei tiefen Temperaturen und nahezu verschwindenden Magnetfeldern eine Quantisierung des elektrischen Widerstandes. Zudem wird der Strom ohne Verluste transportiert. Die Ursache ist eine Form von Magnetismus, der nicht wie in konventionellen Magneten durch die gemeinsame Ausrichtung der Eigendrehimpulse der Ladungsträger verursacht wird, sondern durch die Bewegung der Ladungsträger in der Graphen-Doppellage selbst. „Anders gesagt, die Teilchen erzeugen ihr eigenes intrinsisches Magnetfeld, was zu der Quantisierung des elektrischen Widerstandes führt“, sagt Prof. Dr. Thomas Weitz vom I. Physikalisches Institut der Universität Göttingen.
Besonders an dem Effekt ist, dass er nicht nur ein elektrisches Feld benötigt, sondern auch in achtfacher Ausführung auftritt. Daraus ergibt sich ein hohes Maß an Kontrolle, denn der Effekt lässt sich an- sowie ausschalten und die Bewegungsrichtung der Ladungsträger umkehren. „So können wir sehr einfach nachprüfen, ob der Effekt auftritt oder wie er sich genau manifestiert. Dies macht es für mögliche Anwendungen beispielsweise bei der Entwicklung neuartiger Computerbausteine im Bereich der Spintronik interessant“, so Weitz. „Zudem ist es von Vorteil, dass wir den Effekt in einem doch recht einfachen, und natürlich vorkommendem Materialsystem zeigen können. Ganz anders als bei jüngst populär gewordenen komplexen Heterostrukturen, die eine präzise Zusammensetzung aus verschiedenen Materialien verlangen.“ Zunächst muss der Effekt jedoch weiter untersucht werden, und es müssen Möglichkeiten gefunden werden, den Effekt bei höheren Temperaturen zu stabilisieren, denn momentan tritt er nur bis fünf Grad über dem absoluten Nullpunkt, der bei minus 273 Grad Celsius liegt, auf.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.