Die Welt mit anderen Augen sehen

Eine ganze IR-Kamera auf einem Chip

28.10.2021 - Schweiz

kurzwelliges Infrarotlicht (SWIR) ist für vieles nützlich: Es hilft, beschädigte Früchte auszusortieren, bei der Temperaturüberwachung und der Kontrolle von Siliziumchips, und es ermöglicht Nachtsichtgeräte mit scharfen Bildern. Doch SWIR-Kameras basieren bislang auf teurer Elektronik. Forscher der Empa, der EPFL, der ETH Zürich und der Universität Siena haben nun einen SWIR-Bildschirm entwickelt, der aus nur acht Schichten auf einer Glasoberfläche besteht. Das könnte Infrarot-Kameras zu nützlichen Alltagsgegenständen machen.

Empa

Der IR-Photodetektor gleicht einem Sandwich aus mehreren Schichten. Infrarot-Licht (IR) wird im organischen Photodetektor (OPD) absorbiert, dabei entstehen elektrische Ladungen.

Infrarotlicht (IR) ist für Menschen unsichtbar. Manche Tiere, etwa Klapperschlangen oder blutsaugende Fledermäuse, können IR-Strahlung jedoch wahrnehmen und zur Nahrungssuche nutzen. Doch auch für Menschen wäre eine Sehfähigkeit im kurzwelligen IR-Bereich («short wave infrared», SWIR) bisweilen nützlich. Allein mit Hilfe von Sternenlicht könnte man dann auch in der Nacht recht scharf sehen. Für Mechaniker wäre die Hitze einer Lötspitze auf den ersten Blick erkennbar. Und Obsthändler könnten beschädigte Ware erkennen, noch bevor der Fäulnisprozess beginnt.

Doch IR-Licht hat ein «Problem»: Es ist schwächer als sichtbares Licht und als UV-Licht auf der anderen Seite des Lichtspektrums. Während also UV-Licht in einer Diskothek weisse Hemden und Zähne der Tänzer blau leuchten lässt – dazu braucht es nur einen fluoreszierenden Farbstoff im Waschmittel –, ist IR-Licht fürs menschliche Auge nur schwer sichtbar zu machen. Denn Farbstoffe können zwar energiereiches Licht direkt in energieärmeres umwandeln, nicht aber energiearmes in energiereiches.

Eine ganze IR-Kamera auf einem Chip

IR-Kameras brauchen also Elektronik, um IR-Licht einzufangen, einen elektronischen Verstärker und schliesslich einen Bildschirm, der das künstlich erzeugte Bild anzeigt. Das kostet Geld. Heute übliche SWIR-Kameras für den Industrieeinsatz kosten um die 7000 Franken.

Den Empa-Forschern Roland Hany, Karen Strassel, Wei-Hsu und Michael Bauer ist es nun gelungen, SWIR-Licht mit einem einzigen Bauteil einzufangen und sichtbar zu machen. Der an der Empa entwickelte Baustein ist im Grunde ein OLED-Display mit drei weiteren Zusatzschichten. Das SWIR-Licht fällt durch eine elektrisch leitfähige Glasscheibe auf eine Farbstoffschicht in einem Photodetektor. Dort beginnen Elektronen zu wandern – diese Wanderungsbewegung wird durch eine elektrische Spannung verstärkt. Die elektrischen Ladungen wandern dann in die OLED-Schicht und erzeugen dort einen grünen Lichtpunkt. Eine elektronische Signalverarbeitung durch einen Rechner ist nicht nötig: Das einfallende (unsichtbare) SWIR-Licht wird gewissermassen «analog» verstärkt und direkt auf dem Bildschirm angezeigt. Die Farbe des emittierten sichtbaren Lichts – blau, grün, gelb oder rot – lässt sich durch die Wahl des Farbstoffs in der OLED einstellen.

Nützlich für Nachtsichtgeräte und zur Bohnensortierung

SWIR-Licht ist für viele Anwendungen in der Lebensmittelindustrie, der Logistik oder im Handwerk nützlich. So kann man etwa die Temperatur von Lötspitzen sichtbar machen oder die Abkühlung von neu hergestellten Gläsern und Flaschen überwachen. SWIR-Licht lässt feuchte Gegenstände dunkler erscheinen, was nützlich ist zum Sortieren von Kaffeebohnen oder schwarzen Oliven: Steine und Metallgegenstände als Verunreinigungen leuchten auf dem Förderband hell zwischen all den dunklen (feuchten) Früchten.
Der Schlüssel zum Erfolg für Roland Hanys SWIR-Bildschirm sind spezielle Farbstoffe, die er und seine Kolleginnen und Kollegen schon lange erforschen. Es sind sogenannte Squaraine – der Name stammt von der Grundstruktur des chemischen Moleküls, der Quadratsäure. Diese Farbstoffklasse wurde erstmals in den 1960er-Jahren entdeckt und zeichnet sich durch tiefe Farbe und gute Temperaturbeständigkeit aus. Die Forscher veränderten die Quadratsäure chemisch so, dass sie im Bereich des SWIR-Lichts absorbiert. «Im Moment arbeiten wir mit Farbstoffen, die bei knapp 1000 Nanometer absorbieren», sagt Hany. «Aber wir sind bereits dran, die Absorption zu grösseren Wellenlängen, also weiter hinein in den IR-Bereich zu verschieben. Wenn uns dies gelingt, kann unser Sensor Wasser und Feuchtigkeit noch deutlich besser erkennen als jetzt.»

Auf der Suche nach einem Industriepartner

Hany nennt das von seiner Gruppe entdeckte Modul am liebsten OUC: «organic upconversion device». Denn es verwandelt schwaches IR-Licht in stärkeres, sichtbares Licht («upconversion») und funktioniert mit Hilfe dünner Farbstoffschichten aus kohlenstoffbasierter Chemie («organic»). Ein Problem ist, dass das Knowhow zur industriellen Herstellung organischer, optoelektronischer Bauteile vor allem in Asien angesiedelt ist. Hany ist jedoch zuversichtlich, dass seine Entdeckung bald zum Zuge kommt: «Im Moment arbeiten wir daran, die Empfindlichkeit des Moduls zu erhöhen, und verbessern die Langzeitstabilität.»

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...