Wissenschaftler schaffen ultrahochstabile Katalysatoren auf Cu-Basis

16.12.2021 - China

Die Entwicklung von Katalysatoren auf Cu-Basis ist aufgrund ihrer schlechten thermischen Stabilität, die durch die niedrige Tammann-Temperatur von Cu verursacht wird, begrenzt.

YU Jiafeng

Ultrahochstabiler heterogener Cu/LaTiO2-Katalysator bei 800°C

Kürzlich hat eine Forschungsgruppe unter der Leitung von Prof. YU Jiafeng und Prof. SUN Jian vom Dalian Institute of Chemical Physics (DICP) der Chinesischen Akademie der Wissenschaften (CAS) einen ultrahochstabilen heterogenen Katalysator auf Cu-Basis bei hohen Temperaturen konstruiert, indem sie klassische starke Metall-Träger-Wechselwirkungen (strong metal-support interactions, SMSI) konstruierten.

Diese Studie wurde am 10. Dezember in Nature Communications veröffentlicht. Prof. Noritatsu Tsubaki von der japanischen Toyama Universität und Prof. LIU Yuefeng vom DICP waren ebenfalls an dieser Studie beteiligt.

Die Forscher kombinierten zwei einzigartige Technologien, Magnetronsputtern (SP) und Flammenspray-Pyrolyse (FSP), um die elektronische Struktur von metallischem Cu bzw. die Reduzierbarkeit des TiO2-Trägers zu rekonstruieren.

Sie erzeugten zum ersten Mal die klassische SMSI auf Nicht-Edelmetall-Katalysator auf Cu-Basis bei milden Reduktionstemperaturen und realisierten die kontrollierbare Herstellung eines ultrahochstabilen Katalysators auf Cu-Basis. Dieser Katalysator zeigte eine ultrastabile Leistung für mehr als 500 Stunden bei 600 °C. Die Versinterung von Cu-Nanopartikeln wurde selbst bei 800 °C wirksam unterdrückt.

Darüber hinaus konnte die Festigkeit von SMSI nicht nur wie bisher durch eine Senkung der Temperaturen, sondern auch durch maßgeschneidertes Cu über die Regulierung der Sputterleistung oder dekorierte Träger für ein rationelles Katalysatordesign nach Bedarf wirksam gesteuert werden.

"Wir gehen davon aus, dass unsere neuen Erkenntnisse als allgemeiner Leitfaden für die Entwicklung eines hochstabilen heterogenen Katalysators in einem breiteren Temperaturbereich dienen werden", so Prof. SUN.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...