Lithium-Schwefel-Akkus: Erste multimodale Analyse im Pouchzellenformat
Auswertung zeigt, wie sich der Elektrolyt auf die Bildung von unerwünschten Schwefelpartikeln und Polysulfiden auswirkt
© R. Müller, S. Risse / HZB
Lithium-Schwefel-Akkus (Li/S) haben theoretisch eine Energiedichte von 2500 Wattstunden/kg, die deutlich höher als in konventionellen Lithium-Ionen-Akkus ist. Außerdem verwenden Li/S-Akkus im Vergleich zu Lithium-Ionen-Akkus umweltfreundlichere Kathodenmaterialien. Doch es gibt ein Problem bei Li/S-Akkus: Mit zunehmender Anzahl von Ladezyklen verändert sich das aktive Material, die metallische Lithiumanode korrodiert, die Kapazität sinkt rasch. Mit innovativen Elektrolyten und raffinierten Additiven wird versucht, diese Alterung zu bremsen. Bisher wurden jedoch vor allem Li/S-Akkus im Knopfzellendesign untersucht, wo diese Reaktionen sozusagen im Elektrolyten getränkt stattfinden.
Auf das Format kommt es an: Pouchzellen
Für die Industrie sind jedoch andere Formate wie Rundzellen (Tesla), prismatische Zellen (BMW Group) oder Pouchzellen (Volkswagen) von besonderem Interesse. In diesen Formaten ist die Elektrolytmenge äußerst gering, was besonders hohe Energiedichten ermöglicht. Am HZB wurden nun erstmals multimodale operando Untersuchungen an Li/S Pouchzellen im Rahmen des BMBF-geförderten Projektes „HiPoLiS“ durchgeführt. In Zusammenarbeit mit Teams der TU Dresden sowie des Fraunhofer-IWS hat ein Team um Dr. Sebastian Risse einlagige Li/S-Zellen mit unterschiedlichen Elektrolyten untersucht. „Wir müssen zunächst die Prozesse in monolagigen Zellen verstehen, bevor wir auch mehrfache Lagen in Pouchzellen wissensbasiert optimieren können“, ist Risse überzeugt.
Radiographie mit Sensordaten
Für ihre Studie kombinierten sie Auswertungen der Messdaten mit den Analysen der Röntgenradiographie, die in enger Kooperation mit der Gruppe um den HZB-Bildgebungsexperten Dr. Ingo Manke entstanden. „So konnten wir Aussagen über die Bildung und Ablagerung von Schwefelpartikeln und Polysulfiden im Lauf der Ladezyklen treffen“, sagt Dr. Rafael Müller, der als Postdoc in der Elektrochemie-Gruppe von Risse forscht. Dabei zeigte sich auch, wie stark der Einfluss des genutzten Elektrolyten auf die Partikelbildung ist.
In der multimodalen Messzelle, die Müller, zusammen mit Risse entwickelt hat, befinden sich unterschiedliche Sensoren: Sie erfassen die elektrochemische Impedanz, die Temperatur, aber auch mechanische Kräfte auf den Elektroden. Zusätzlich wird die Pouchzelle während des gesamten Betriebs (operando) mit Röntgenlicht durchleuchtet, um eine Radiographie zu erstellen, aus der sich auf die chemischen Abscheidungsprozesse schließen lässt.
Das Pouchzellenlabor am HZB
Um weitere Fortschritte auf Basis dieses Zellformats zu machen, wurde letztes Jahr in der Abteilung Elektrochemische Energiespeicherung von Prof. Yan Lu ein Pouchzellenlabor aufgebaut. Zur Herstellung dieser Zellen werden rechteckige Elektroden in Scheckkartenformat aufeinandergestapelt und - lediglich von einer dünnen Separatorfolie getrennt - in eine versiegelbare Tasche (Pouch) gesteckt. Pouchzellen benötigen im Vergleich zu Knopfzellen nur wenig Elektrolyt, um den Ladungstransport zu gewährleisten. Alle elektrochemischen Prozesse finden daher unter deutlich trockeneren Bedingungen statt. „Der notwendige Elektrolytmangel wirkt sich auf diese Prozesse sehr stark aus und muss daher direkt in einem industriell relevanten Zellformat untersucht werden“, sagt Risse.
Energie für den Wingcopter
Ein Ziel des HiPoLiS-Projektes ist es, die Reichweite einer Logistikdrohne des Projektpartners Wingcopter aus Darmstadt mit den verbesserten Pouchzellen aus Dresden zur erhöhen. Das Fraunhofer IWS produziert hierfür Li/S Zellen mit bis zu 40 Lagen, die dann in die bestehende Energieversorgung der Drohne integriert werden.
Originalveröffentlichung
Rafael Müller, Ingo Manke, André Hilger, Nikolay Kardjilov, Tom Boenke, Florian Reuter, Susanne Dörfler, Thomas Abendroth, Paul Härtel, Holger Althues, Stefan Kaskel, Sebastian Risse; "Operando radiography and multimodal analysis of lithium-sulfur pouch cells – electrolyte dependent morphology evolution at the cathode"; Advanced Energy Materials; 2022
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.