Neue Zustände in 2D-Materialien
Forschungsteam hat eine dreifache Kopplung zwischen Exziton, Photon und Phonon in zweidimensionalen Materialien aufgezeigt und quantifiziert
Atomar dünne zweidimensionale (2D) Materialien können hochinteressante exzitonische Eigenschaften aufweisen, die sie zu einer attraktiven Plattform für Forschungen auf dem Gebiet der polaritonischen Physik machen.

Kopplung von Phonon (grün), Exziton (pink) und Photon eines Mikroresonators (rot) in einem 2D-Material.
Donghai Li, Universität Würzburg
Ein Blick in die einschlägige wissenschaftliche Literatur zeigt, dass schon eine Vielzahl anorganischer Exziton-Polariton-Systeme experimentell untersucht und theoretisch beschrieben wurde. Dabei kam stets das allgemein akzeptierte Modell zweier gekoppelter Oszillatoren zum Einsatz, das nur die Kopplung zwischen Exzitonen und Hohlraumphotonen berücksichtigt.
Nun hat eine Gruppe um Donghai Li an der Julius-Maximilians-Universität (JMU) Würzburg herausgefunden, dass die Anordnung von 2D-Halbleitern in Mikrokavitäten zu einer starken Wechselwirkung zwischen Exzitonen und Hohlraumphotonen, aber auch mit Phononen führen kann. Das Team ist der Ansicht, dass seine Ergebnisse das Paradigma der Exzitonen-Polaritonen-Physik in 2D-Materialien verändern könnten, indem sie die Rolle der Phononen hervorheben und quantifizieren.
Neuartige Methode mit 20 Femtosekunden Zeitauflösung
Das JMU-Team entwickelte dazu eine neuartige Methode der kohärenten 2D-Mikrospektroskopie. Sie bietet eine spektrale Auflösung sowohl für die Anregungs- als auch für die Detektionsschritte in Kombination mit einer mikroskopischen Ortsauflösung und einer zeitlichen Auflösung von etwa 20 Femtosekunden.
Mit dieser Technik lässt sich ein reichhaltiges Spektrum von Mehrfachanregungen abbilden, das mit linearen Photolumineszenz-Experimenten bisher unzugänglich war. Der Vergleich mit einem neuartigen vibronischen Polaritonmodell, das nicht nur die Freiheitsgrade von Exzitonen und Photonen, sondern auch die von Phononen berücksichtigt, zeigt mehrere Polaritonzweige, die durch Exziton-Photon-Phonon-Hybridisierung entstehen.
Das markiert die Entdeckung von bisher unbeobachteten hellen Zuständen in Mikrokavitäten mit eingebetteten 2D-Materialien. Die JMU-Gruppe erwartet, dass diese Entdeckung für die laufenden Versuche, die Bose-Einstein-Kondensation bei Raumtemperatur und das Polariton-Lasing in diesen Systemen zu realisieren, von Bedeutung sein wird.
Originalveröffentlichung

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.