Atomare Terahertz-Schwingungen lösen das Rätsel ultrakurzer Solitonen-Moleküle
Erkenntnisse können dazu beitragen, besonders schnelle chemisch-sensitive Mikroskope zu entwickeln, mit denen Materialien identifiziert werden können
(c) Georg Herink
In Ultrakurzpuls-Lasern können optische Solitonen besonders enge räumliche und zeitliche Verbindungen eingehen. Diese werden auch als ultrakurze „Solitonen-Moleküle“ bezeichnet, weil sie ähnlich wie die chemisch gebundenen Atome eines Moleküls stabil aneinander gekoppelt sind. Die Forschungsgruppe in Bayreuth verwendete einen weitverbreiteten Festkörperlaser aus einem mit Titanatomen versehenen Saphirkristall, um herauszufinden, wie diese Kopplung entsteht. Zunächst bewirkt ein einzelner vorauseilender Lichtblitz, dass die Atome im Kristallgitter des Saphirs in ultraschnelle Schwingungen geraten. Diese charakteristischen Schwingungen liegen im Terahertzbereich und klingen innerhalb von wenigen Pikosekunden wieder ab (eine Pikosekunde entspricht einer Billionstel Sekunde). In dieser extrem kurzen Zeitspanne ändert sich der Brechungsindex des Kristalls. Folgt nun unmittelbar ein zweiter Lichtblitz und holt den ersten ein, so spürt er diese Veränderung: Er wird von den Atomschwingungen nicht nur leicht beeinflusst, sondern auch stabil an das vorausgehende Soliton gebunden. Ein „Solitonen-Molekül“ ist geboren.
„Der von uns entdeckte Mechanismus beruht auf den physikalischen Effekten der Raman-Streuung und Selbstfokussierung. Er erklärt eine Vielzahl von Phänomenen, die der Wissenschaft seit der Erfindung von Titan-Saphir-Lasern vor über 30 Jahren Rätsel aufgegeben haben. Das besonders Spannende an der Entdeckung ist dabei, dass wir die Dynamik der Solitonen während ihrer Erzeugung im Laserresonator jetzt dazu ausnutzen können, um atomare Bindungen in Materialien extrem schnell abzutasten. Die gesamte Messung eines sogenannten Intracavity-Raman-Spektrums dauert jetzt weniger als eine Tausendstel Sekunde. Diese Erkenntnisse können dazu beitragen, besonders schnelle chemisch-sensitive Mikroskope zu entwickeln, mit denen Materialien identifiziert werden können. Darüber hinaus eröffnet der Kopplungsmechanismus neue Strategien, um Lichtpulse durch Atombewegungen zu steuern und umgekehrt einzigartige Materialzustände durch Lichtpulse zu erzeugen“, erklärt Juniorprofessor Dr. Georg Herink, Leiter der Studie und Juniorprofessor für Ultraschnelle Dynamik an der Universität Bayreuth.
Parallel zur Analyse experimenteller Daten ist es den Forscher*innen gelungen, ein theoretisches Modell für die Solitonendynamik zu entwickeln. Das Modell ermöglicht es, die in Experimenten gewonnenen Beobachtungen zu erklären und neuartige Effekte von Atomschwingungen auf die Dynamik von Solitonen vorherzusagen. Die Wechselwirkungen von Solitonen in optischen Systemen und ihre Anwendungen für die Hochgeschwindigkeits-Spektroskopie werden gegenwärtig im Rahmen des DFG-Forschungsprojekts FINTEC an der Universität Bayreuth untersucht.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DM8000 M & DM12000 M von Leica
Mehr sehen, schneller erkennen
Inspektionssysteme für höchsten Durchsatz
alpha300 R von WITec
3D Raman Mikroskope mit unerreichter Geschwindigkeit, Sensitivität und Auflösung
Jedes chemische Detail der Probe wird sichtbar
LUMOS II von Bruker
FT-IR-Mikroskopie auf der Überholspur – das LUMOS II
Ein Infrarot-Mikroskop für alle
HYPERION II von Bruker
FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung
Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle
ZEISS ZEN core von Carl Zeiss
ZEISS ZEN core - Software-Suite für vernetzte Mikroskopie vom Analyselabor bis zur Produktion
Die umfangreiche Lösung für Bildgebung, Segmentierung und Datenanalyse in vernetzten Materiallaboren
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.