Katalysator aus heißem Wasser
Umweltfreundliche Hydrothermalsynthese einer Substanz mit sowohl organischen als auch anorganischen Eigenschaften im selben Vorgang
D. Alonso Cerrón-Infantes
Die Studie wurde aktuell vom Journal of Materials Chemistry A online veröffentlicht. In der nachfolgenden gedruckten Ausgabe des Journals (Band 24, Jahrgang 2022) wird sie die Titelseite einnehmen, was eine besondere Wertschätzung bedeutet.
Die Hydrothermalsynthese, das Herstellen von Materialien unter Druck in heißem Wasser, ist der Natur abgeschaut. In unterirdischen Heißwasserseen beispielsweise bilden sich Bergkristalle, indem die im heißen Wasser gelösten Atome miteinander reagieren, erst Moleküle und dann Kristalle bilden. Auf dieselbe Weise lassen sich in der synthetischen Chemie anorganische, und – wie in einer Studie zum umweltfreundlichen Verfahren bei der Synthese organischer Stoffe aus dem Jahr 2021 von Miriam Unterlass nachzulesen ist – auch organische Moleküle ohne toxische Lösungsmittel herstellen.
Umweltfreundliche Synergie beider Verfahren
Die aktuellen Ergebnisse, an denen Erstautorin Dr. Hipassia Moura, Postdoktorandin im Team von Miriam Unterlass, maßgeblichen Anteil hat, bilden eine umweltfreundliche Synergie beider Verfahren. Miriam Unterlass: „In unserer Arbeit zeigen wir, dass es möglich ist, auf diese Weise gleichzeitig anorganische und organische Stoffe zu bilden, und dass auch etwas Sinnvolles dabei herauskommt.“
Dass die Herstellung des Hybridmaterials völlig ohne toxische Lösungsmittel auskommt, ist umso bemerkenswerter, als die Arbeitsgruppe der Chemikerin mit Farbmolekülen arbeitet, zu deren Synthese normalerweise hochgiftige Chemikalien gebraucht werden. Der Kern der neuen Substanz, die in heißem Wasser entstanden ist, wird von Farbstoffmolekülen gebildet, die als Lösung vorliegen, während das sie umgebende Material die Eigenschaften eines Festkörpers hat. Das Resultat ist ein Festkörper, der sich in puncto optischer Eigenschaften auch wie eine Lösung verhält.
Wiederverwendbarer Katalysator
Farbstoffe haben als Lösungen ganz spezifische Eigenschaften. Die von der Arbeitsgruppe von Miriam Unterlass verwendeten Farbmoleküle sind in der Lage, Licht zu absorbieren und damit Reaktionen zu katalysieren. Dieser Prozess ähnelt der Photosynthese bei Pflanzen, wo es ebenfalls die Farbstoffe sind, die das Licht absorbieren, mit dem die Photosynthese vollzogen wird. Die Tatsache, dass sich das Hybridmaterial nach außen wie ein Festkörper verhält, hat obendrein den großen Vorteil, dass es im Gegensatz zu einer Lösung, die nach Gebrauch entsorgt werden muss, immer wieder als Katalysator eingesetzt werden kann.
Die Arbeitsgruppe Unterlass zielt mit der Anwendung des Katalysators konkret auf kleine organische Moleküle, die bei Medikamenten eine Rolle spielen. Grundsätzlich ist die Methode aber für jegliche chemische Reaktion und damit die Herstellung jeglicher synthetischen Produkte relevant. Und während für die Synthese des hybriden Materials noch Wasser erhitzt werden muss, ist der katalytische Effekt durch Lichtenergie völlig ohne Ressourcenverbrauch zu haben. „Licht ist die allerbeste Ressource, die wir haben. Licht kann nicht verbraucht werden“, sagt Miriam Unterlass.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.