Brennstoff aus Treibhausgas
Vereinzelte Goldatome als Katalysator für die selektive Methanisierung von Kohlendioxid
© Wiley-VCH
Die photokatalytische Umwandlung von CO2 läuft über eine Reihe von Prozessen, bei denen Elektronen übertragen werden. Dabei können verschiedenen Produkten entstehen, u.a. Kohlenmonoxid (CO), Methanol (CH3OH), Methan (CH4) sowie weitere Kohlenwasserstoffe. Acht Elektronen müssen für den Weg von CO2 zu CH4 transferiert werden – mehr als für andere C1-Produkte. Methan als Endprodukt ist zwar thermodynamisch bevorzugt, aber die Konkurrenzreaktion zu CO etwa benötigt nur zwei Elektronen und läuft viel schneller ab, ist also kinetisch bevorzugt. Eine effektive und selektive Methanisierung ist daher besonders herausfordernd.
Das Team um Hefeng Cheng von der Shandong University in Jinan hat jetzt einen praktikablen Ansatz entwickelt, um CO2 mittels Sonnenenergie effizient in Methan zu verwandeln. Schlüssel zum Erfolg ist ein neuartiger Katalysator mit einzelnen Goldatomen. Da Goldatome bei konventionellen Präparationsmethoden aggregieren, entwickelte das Team eine neue Strategie über einen Komplex-Austausch zur Herstellung des Katalysators.
Einzelatom-Katalysatoren verhalten sich aufgrund ihrer besonderen elektronischen Strukturen anders als herkömmliche Metall-Nanopartikel. Auf einem geeigneten Trägermaterial fixiert sind zudem quasi alle einzelnen Atome als katalytisch aktive Zentren zugänglich. Bei diesem neuen Katalysator sind einzelne Goldatome auf einer ultradünnen Zink-Indium-Sulfid-Nanoschicht verankert und mit nur je zwei Schwefelatomen koordiniert. Unter Sonnenlicht zeigte sich der Katalysator sehr aktiv bei einer Methan-Selektivität von 77 %.
Ein Photosensibilisator (ein Ruthenium-Komplex) absorbiert Licht, wird angeregt und nimmt ein Elektron auf, das von einem Elektronen-Donor (Triethanolamin) zur Verfügung gestellt wird, und gibt es an den Katalysator weiter. Die einzelnen Goldatome auf der Oberfläche des Trägermaterials agieren als „Elektronenpumpen“: Sie fangen die Elektronen wesentlich effektiver ein als z.B. Gold-Nanopartikel und übertragen sie dann auf CO2-Moleküle und Intermediate.
Detaillierte Charakterisierungen und Computerberechnungen ergaben, dass der Katalysator die CO2-Moleküle zudem deutlich stärker als Gold-Nanopartikel aktiviert, die angeregte *CO-Zwischenstufe stärker adsorbiert, die Energiebarriere für die Bindung von Wasserstoffionen senkt und die angeregte *CH3-Zwischenstufe stabilisiert. So kann sich bevorzugt CH4 bilden, während die Freisetzung von CO minimiert wird.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.