Struktur eines metall-organischen Materials mit Anwendungen im Gesundheits- und Kommunikationsbereich bestimmt

Eine Studie unter Beteiligung des CSIC zeigt, dass Kupfer-Escuarat große leere Kanäle mit hoher Porosität enthält

16.09.2022 - Spanien

Ein Forschungsteam unter Beteiligung des spanischen Nationalen Forschungsrats (CSIC) hat die Kristallstruktur von Kupfer-Quadrat, einem metallorganischen Material, bestimmt. Die Wissenschaftler haben herausgefunden, dass es, wie auch andere Materialien dieser Art, große leere Kanäle enthält, die ihm eine hohe Porosität verleihen und zusammen mit seiner strukturellen Gleichmäßigkeit dazu führen, dass es z. B. zur Absorption von umweltschädlichen Gasen und chemischen Verbindungen verwendet werden kann. Die Studie wurde in der Zeitschrift Solids veröffentlicht.

CSIC

Dreidimensionales Bild eines Kanals in der Kristallstruktur von Kupfer-Quadrat.

"Durch das Verständnis der Struktur von Kupfer-Quadrat konnten wir seine Komprimierbarkeit untersuchen und feststellen, dass das Material eine negative lineare Komprimierbarkeit (NLC) aufweist, eine Eigenschaft, die vielfältige Anwendungsmöglichkeiten bietet, da Materialien dieser Art, so seltsam es auch klingen mag, bei Dehnung komprimiert werden und sich bei Druck ausdehnen", erklärt Vicente Timón, ein CSIC-Forscher am Institut für die Struktur der Materie (IEM-CSIC). Die Wissenschaftler haben diese Schlussfolgerungen mit Hilfe theoretischer Berechnungsmethoden gezogen.

Zu den potenziellen Einsatzmöglichkeiten von NLC-Materialien gehören die Entwicklung ultraempfindlicher Geräte für die Druckmessung, die optische Telekommunikation, künstliche Muskeln, Körperpanzer sowie Geräte zur Schalldämpfung, Supraleitungsmodulation, ferroelektrischen Verstärkung und Stabilisierung der Signalübertragung.

"Aufgrund der vielfältigen Anwendungsmöglichkeiten dieser Materialien wurden viele Ressourcen in ihre Erforschung gesteckt. Doch obwohl die Suche nach neuen Materialien intensiv und fruchtbar ist, steckt die Forschung noch in den Kinderschuhen. Daher ist die Bestimmung der kristallinen Struktur von Kupfer-Quadrat ein wichtiger Fortschritt auf diesem Gebiet", sagt Francisco Colmenero, Erstautor der Studie und Wissenschaftler an der Universität Complutense in Madrid.

Die Ergebnisse des Artikels schlagen einen einfachen Weg vor, um neue NLC-Materialien mit einfacher chemischer Zusammensetzung und hoher Verfügbarkeit zu finden, indem nach leeren Kanälen zwischen Verbindungen mit bekannten Kristallstrukturen gesucht wird. Sie weist auch auf eine Methode hin, um neue NLC-Materialien künstlich zu erhalten, indem Strukturen mit leeren Strukturkanälen erzeugt werden. "Da die Nanotechnologie die Konstruktion von Materialien mit nahezu beliebiger Geometrie verspricht, sollte die künstliche Nachbildung der strukturellen Merkmale, die zum NLC-Effekt führen, die Erzeugung einer breiten Palette von Metamaterialien mit wünschenswerten mechanischen Eigenschaften ermöglichen", fügt der CSIC-Forscher hinzu.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Spanisch finden Sie hier.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?