Schärfer denn je: Kieler Physiker machen Molekülschwingungen besser messbar
Die neue Methode wird helfen, Wechselwirkungen in Molekülsystemen besser zu verstehen und Simulationsmethoden weiterzuentwickeln
© Jan Homberg
Für die Entdeckung von Dr. Jan Homberg, Dr. Alexander Weismann und Prof. Dr. Richard Berndt vom Institut für Experimentelle und Angewandte Physik, spielt ein quantenmechanischer Effekt eine entscheidende Rolle, das sogenannte inelastische Tunneln. Elektronen, die auf ihrem Weg im Rastertunnelmikroskop von einer Metallspitze zur Substratoberfläche ein Molekül durchqueren, können Energie an das Molekül abgeben oder von ihm aufnehmen. Dieser Energieaustausch erfolgt in Portionen, die von den Eigenschaften des jeweiligen Moleküls bestimmt werden.
Normalerweise geschieht dieser Energieübertrag nur selten und ist deshalb schwer messbar. Um das Messsignal zu verstärken und simultan eine hohe Frequenzauflösung zu erreichen, nutzte das CAU-Team eine besondere Eigenschaft von Molekülen auf Supraleitern, die sie zuvor entdeckt hatten: Geeignet arrangiert zeigen die Moleküle einen Zustand, der in Spektren nadelförmig, sehr hoch und extrem scharf erscheint, also sehr gut sichtbar ist – die sogenannte Yu-Shiba-Rusinov Resonanz. Unterstützt wurden die Experimente durch theoretische Arbeiten von Troels Markussen von der Software-Firma Synopsis in Kopenhagen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.