Photokatalyse: Prozesse bei der Ladungstrennung experimentell erfasst

Ergebnisse geben Hinweise, um die Effizienz von Photokatalysatoren zu steigern

11.11.2022 - Deutschland

Bestimmte Metalloxide gelten als gute Kandidaten für Photokatalysatoren, um mit Sonnenlicht grünen Wasserstoff zu produzieren. Ein chinesisches Team hat nun in Nature spannende Ergebnisse zu Kupfer(I)oxid-Partikeln veröffentlicht, zu denen eine am HZB entwickelte Methode erheblich beigetragen hat. Die transiente Oberflächen-Photospannungs-Spektroskopie zeigte, dass positive Ladungsträger an Oberflächen im Laufe von Mikrosekunden durch Defekte eingefangen werden. Die Ergebnisse geben Hinweise, um die Effizienz von Photokatalysatoren zu steigern.

T. Dittrich / HZB

Die Photospannungen sind abhängig von Photonenenergie (x-Achse) und Zeit (Y-Achse) aufgetragen. Positive SPV-Signale entsprechen der Relaxation von eingefangenen Löchern, negative SPV-Signale der Relaxation eingefangenen Elektronen.

Die Aufspaltung von Wasser in Wasserstoff und Sauerstoff mit Hilfe von photokatalytisch aktiven Partikeln könnte künftig preiswert grünen Wasserstoff produzieren: Mit Sonnenlicht werden in Photokatalysatoren Ladungsträger aktiviert, deren räumliche Trennung bei der photokatalytischen Wasserspaltung eine entscheidende Rolle spielt. Allerdings sind heutige Photokatalysatoren noch entweder sehr teuer oder wenig effizient.

Metalloxidpartikel als Katalysatoren

Metalloxidpartikel gelten als günstige Kandidaten mit großem Potential: Bei der Aktivierung von Ladungsträgern durch Licht überlagern sich jedoch mehrere Prozesse, die mit unterschiedlichen Geschwindigkeiten und auf verschiedenen räumlichen Skalen stattfinden. Um solche Prozesse experimentell zu beobachten, werden Methoden benötigt, die Zeitauflösungen bis hinunter zu Femtosekunden bieten, aber auch längere Prozesse beobachten können, die innerhalb von Mikrosekunden und langsamer ablaufen. An mikrokristallinen Kupfer(I)oxid-Partikeln hat dies nun ein Team um Fengtao Fan und Can Li aus dem Dalian National Laboratory for Clean Energy, China, geschafft. Die Ergebnisse sind so interessant, dass Nature die Arbeit publizierte und redaktionell hervorgehoben hat.

Schnelle Wanderung der Elektronen

Mit rasch aufeinanderfolgenden mikroskopischen Aufnahmen der zeitaufgelösten Photoemissions-Elektronen-Mikroskopie zeigten sie, dass einer dieser Prozesse in den Cu2O-Partikeln extrem schnell abläuft – in weniger als Pikosekunden (10-12 s): Nach Anregung mit Licht werden Elektronen quasi ballistisch auf {001}-Facetten von Cu2O-Partikeln übertragen.

Langsamer Einfang von "Löchern"

Um einen zweiten Prozess experimentell zu beobachten, war jedoch eine andere Methode erforderlich: Denn photogenerierte „Löcher" wandern zu den {111}-Facetten und werden dort durch Defekte eingefangen. Diesen wichtigen Prozess konnte Thomas Dittrich mit Transienter Oberflächenphotospannungs-Spektroskopie (SPV-Spektroskopie) beobachten, einer von ihm am HZB entwickelten Methode. „Wir stellten fest, dass der Löchereinfang relativ langsam stattfand, im Lauf von Mikrosekunden“, erklärt er.

Hohe Zeit- und Ortsauflösung

Zusammengenommen ermöglichen die Ergebnisse erstmals, Prozesse, die die Photokatalyse limitieren, auf mikrokristallinen Partikeln mit hoher Orts- und Zeitauflösung über weite Bereiche zu untersuchen und besser zu verstehen.

Vielseitige Methode mit breitem Einsatzbereich

„Mit der Transienten SPV-Spektroskopie können wir auch andere Halbleiter und Grenzflächen untersuchen, die z.B. für Anwendungen von der Photovoltaik über die Photokatalyse bis zur Hochleistungselektronik relevant sind“, sagt Dittrich. Auch an organischen Halbleitern oder Ultrabreitband-Halbleitern wie Diamant lassen sich interessante Einsichten in Relaxationsprozesse gewinnen. „Vielleicht kann unsere Publikation in Nature dazu führen, diese vielseitige Methode bekannter zu machen“, sagt Dittrich.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren