Elektrokatalyse: Chemie und Struktur von Eisen-Kobalt-Oxyhydroxiden vermessen
Materialklasse zählt zu den besten Anodenkatalysatoren für die elektrolytische Wasserspaltung zur Gewinnung von grünem Wasserstoff
P. Menezes / HZB /TU Berlin
Sobald wie möglich müssen wir ohne fossile Brennstoffe auskommen, nicht nur im Energiesektor, sondern auch in der Industrie. Die aber ist auf Kohlenwasserstoffe und andere chemische Grundstoffe angewiesen, die bisher aus fossilen Ressourcen gewonnen werden. Solche Grundstoffe können im Prinzip mit Hilfe elektrokatalytisch aktiver Materialien und erneuerbar erzeugter Energie auch aus Wasser und Kohlendioxid hergestellt werden. Derzeit bestehen diese Katalysatormaterialien jedoch entweder aus teuren und seltenen Materialien oder sind nicht effizient genug.
Schlüsselreaktion bei der Wasserspaltung
Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat nun Einblicke in die Chemie eines der aktivsten Katalysatoren für die anodische Sauerstoffentwicklungsreaktion (OER) gewonnen. Dies ist eine Schlüsselreaktion bei der Wasserspaltung, die Elektronen für die Wasserstoffentwicklungsreaktion (HER) bereit stellt. Der Wasserstoff kann dann zum Beispiel zu Kohlenwasserstoffen weiter verarbeitet werden. Darüber hinaus spielt die OER auch bei der direkten elektrokatalytischen Reduktion von Kohlendioxid zu Alkoholen oder Kohlenwasserstoffen eine zentrale Rolle.
Elektrokatalysatoren für die Sauerstoffentwicklung
Eine vielversprechende Klasse von Elektrokatalysatoren für OER sind Kobalt-Eisen-Oxyhydroxide. Das Forschungsteam analysierte eine Reihe von helikalen LiFe1-xCox-Borophosphaten an BESSY II, die sich während der OER zu aktiven Kobalt-Eisen-Oxyhydroxiden umstrukturieren. Mit verschiedenen in situ Spektroskopietechniken gelang es, die Oxidationsstufen der Element Eisen (Fe) und Kobalt (Co) zu bestimmen.
Katalytisches Zentrum untersucht
„Eisen spielt eine wichtige Rolle in OER-Katalysatoren auf Kobalt-Basis. Der genaue Grund dafür ist jedoch umstritten. Die meisten Studien gehen davon aus, dass Eisen in niedrigeren Oxidationsstufen (+3) Teil der aktiven Struktur ist. In unserem Fall konnten wir jedoch Eisen in Oxidationsstufen größer als 4 nachweisen, und außerdem zeigen, dass sich Bindungsabstände deutlich verkürzt haben. Damit können wir das katalytisch aktive Zentrum deutlich genauer verstehen", so Menezes.
Elektrokatalysatoren ermöglichen den Ladungstransfer vom Substrat (hier Wasser) zu den Elektroden, was meist mit einer Änderung der Oxidationsstufen der Übergangsmetalle einhergeht. Diese Veränderungen des Oxidationszustands sind jedoch manchmal zu schnell, um erkannt zu werden. Dies macht es schwierig, das Funktionsprinzip des Katalysators zu verstehen, insbesondere wenn er zwei potenziell aktive Elemente wie Eisen und Kobalt enthält. „Wir hoffen, dass die detaillierte elektronische und strukturelle Beschreibung wesentlich zur Verbesserung von OER-Katalysatoren beitragen kann", sagt Menezes.