Mikroskopie: Höchste Auflösung in drei Dimensionen
Superauflösende Mikroskopiemethode entwickelt, mit der molekulare Strukturen im Dreidimensionalen schnell unterschieden werden können
© LMU
Die Forschenden kombinierten die von Tinnefelds Team entwickelte sogenannte pMINFLUX-Methode mit einem Ansatz, der besondere Eigenschaften von Graphen als Energieakzeptor nutzt. pMINFLUX basiert darauf, dass die Fluoreszenzintensität von durch Laserpulse angeregten Molekülen gemessen wird. Die Methode ermöglicht es, deren laterale Abstände mit einer Auflösung von nur 1 Nanometer zu unterscheiden. Graphen absorbiert die Energie eines fluoreszierenden Moleküls, wenn dieses nicht mehr als 40 Nanometer von seiner Oberfläche entfernt ist. Die Fluoreszensintensität des Moleküls hängt dann von seiner Entfernung zu Graphen ab und kann zur axialen Abstandsmessung genutzt werden.
Schnellere Messung mit L-PAINT
Die Kombination von pMINFLUX mit diesem sogenannten Graphen-Energie-Transfer (GET) liefert daher Informationen zu Molekülabständen in allen drei Dimensionen – und zwar in höchster Auflösung von unter 0,3 Nanometer. „Die hohe Präzision von GET-pMINFLUX ermöglicht neue Ansätze, um die Superauflösungsmikroskopie zu verbessern“, sagt Jonas Zähringer, Erstautor der Publikation.
Dies nutzten die Forschenden, um auch die Geschwindigkeit der Superauflösungsmikroskopie weiter zu erhöhen. Dazu entwickelten sie mithilfe von DNA-Nanotechnologie den sogenannten L-PAINT-Ansatz. Im Gegensatz zu DNA-PAINT, einer Technik, bei der durch An- und Abbinden eines mit Fluoreszenzfarbstoff markierten DNA-Strangs Superauflösung ermöglicht wird, hat der DNA-Strang bei L-PAINT zwei Bindesequenzen. Zusätzlich designten die Forschenden eine Bindungshierarchie, sodass der L-PAINT-DNA-Strang auf einer Seite länger bindet. Dadurch kann das andere Ende des Strangs die Molekülpositionen lokal schnell abrastern.
„Dies erhöht nicht nur die Geschwindigkeit, sondern ermöglicht das Abtasten von dichten Clustern schneller als Störungen durch thermische Drift“, so Tinnefeld. „Die Kombination mit GET-pMINFLUX und L-PAINT ermöglicht es uns, Strukturen und Dynamiken auf molekularer Ebene zu untersuchen, die fundamental für unser Verständnis von biomolekularen Reaktionen in Zellen sind.“
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.