Grüne Energie durch Abwärme

Effizienz thermoelektrischer Materialien optimiert

24.03.2023 - Deutschland

Wie kann man die Energieumwandlung effizienter gestalten und Abwärme zur Stromerzeugung nutzen? Ein Team des Max-Planck-Instituts für Eisenforschung verbesserte die Mikrostruktur thermoelektrischer Materialien, indem sie die Korngrenzen mit Titan anreicherte. Auf diese Weise konnten sie eine optimale niedrige thermische und hohe elektrische Leitfähigkeit erreichen.

© R. Bueno Villoro, Max-Planck-Institut für Eisenforschung GmbH

Die Chemie und die atomare Anordnung der Korngrenzen bestimmen den Elektronentransport, und somit die elektrische Leitfähigkeit des Materials. Titanreiche Korngrenzen leiten Elektrizität besser (links), als eisenreiche Korngrenzen (rechts).

In Zeiten knapper Energie sind nachhaltige Wege zur Energiegewinnung essentiell. So könnten zum Beispiel thermoelektrische Materialien zur Umwandlung von Abwärme in Energie genutzt werden. Allerdings ist diese Umwandlung bisher nicht effizient genug, um im industriellen Großmaßstab verwendet zu werden. Um die Effizienz zu steigern und grünen Strom aus Abwärme zu erzeugen, ist ein besseres Verständnis der funktionellen und strukturellen Eigenschaften der thermoelektrischen Materialien nötig. Einem Forschungsteam unter Leitung des Düsseldorfer Max-Planck-Instituts für Eisenforschung ist es nun gelungen, die Mikrostruktur eines vielversprechenden neuen thermoelektrischen Materials zu optimieren und somit den Weg zur industriellen Nutzung dieser Materialien zu ebnen. Das Team veröffentlichte seine Ergebnisse in der Fachzeitschrift Advanced Energy Materials.

Titan verbessert die elektrische Leitfähigkeit

Die Mikrostruktur der meisten Metalle und thermoelektrischer Materialien besteht aus Kristallen, sogenannten Körnern. Die Struktur und Zusammensetzung der Körner und der Räume zwischen ihnen, den sogenannten Korngrenzen, sind für die thermische und elektrische Leitfähigkeit thermoelektrischer Materialien entscheidend. Frühere Forschungsarbeiten haben gezeigt, dass Korngrenzen sowohl die thermische als auch die elektrische Leitfähigkeit des Materials verringern. Optimal ist allerdings eine niedrige thermische Leitfähigkeit, damit die Wärme beziehungsweise Energie im Material bleibt, und eine hohe elektrische Leitfähigkeit, um möglichst viel Wärme in Energie umzuwandeln. Ziel der Forschungsgruppe des MPIE, der Northwestern University (USA) und des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden war es, die Korngrenzen so zu optimieren, dass nur die thermische Leitfähigkeit verringert wird, ohne die elektrische Leitfähigkeit zu beeinträchtigen. Sie verwendeten eine Legierung aus Niob, Eisen und Antimon, die bei mittleren bis hohen Temperaturen thermisch und mechanisch robust ist und deren Elemente reichlich verfügbar und unschädlich sind.

„Wir haben mit Rastertransmissionselektronenmikroskopen und Atomsonden die Mikrostruktur der Legierung bis auf die atomare Ebene untersucht. Unsere Analyse hat gezeigt, dass die Chemie und die atomare Anordnung der Korngrenzen optimiert werden müssen, um die elektrischen und thermischen Eigenschaften zu verbessern. Je kleiner die Körner im Material, desto höher die Anzahl der Korngrenzen und desto schlechter die elektrische Leitfähigkeit“, sagt Ruben Bueno Villoro, Doktorand in der unabhängigen Forschungsgruppe „Nanoanalytik und Grenzflächen“ von Prof. Christina Scheu am MPIE und Erstautor der Veröffentlichung. „Es ist nicht sinnvoll die Körner im Material zu vergrößern, da größere Körner die Wärmeleitfähigkeit erhöhen würden und wir somit Wärme und damit Energie verlieren. Deswegen mussten wir einen Weg finden, die elektrische Leitfähigkeit trotz der kleinen Körner zu erhöhen“, erklärt Dr. Siyuan Zhang, Projektleiter in derselben Forschungsgruppe und korrespondierender Autor der Veröffentlichung. Die Lösung ist das Material mit Titan anzureichern, welches sich unter anderem an den Korngrenzen ansammelt und damit die elektrische Leitfähigkeit erhöht.

Nächster Schritt: Selektive Anreicherung von Titan an Korngrenzen

Nachdem der Einsatz von Titan die elektrische Leitfähigkeit des Materials verbessert hat ohne die Wärmeleitfähigkeit zu beeinflussen, analysiert das Forschungsteam nun Möglichkeiten Titan gezielt nur an den Korngrenzen einzusetzen ohne das ganze Material mit Titan anzureichern. Diese Strategie spart Kosten und erhält die ursprüngliche chemische Zusammensetzung des thermoelektrischen Materials weitestgehend. Die aktuelle Forschungsarbeit zeigt wie funktionelle Eigenschaften mit der atomaren Struktur eines Materials verbunden werden können, um gezielt bestimmte Eigenschaften zu optimieren.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...